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Drug Target Identification
Using Side-Effect Similarity
Monica Campillos,1* Michael Kuhn,1* Anne-Claude Gavin,1 Lars Juhl Jensen,1,2 Peer Bork1,3†

Targets for drugs have so far been predicted on the basis of molecular or cellular features, for
example, by exploiting similarity in chemical structure or in activity across cell lines. We used
phenotypic side-effect similarities to infer whether two drugs share a target. Applied to 746 marketed
drugs, a network of 1018 side effect–driven drug-drug relations became apparent, 261 of which are
formed by chemically dissimilar drugs from different therapeutic indications. We experimentally
tested 20 of these unexpected drug-drug relations and validated 13 implied drug-target relations by
in vitro binding assays, of which 11 reveal inhibition constants equal to less than 10 micromolar.
Nine of these were tested and confirmed in cell assays, documenting the feasibility of using
phenotypic information to infer molecular interactions and hinting at new uses of marketed drugs.

The treatment of human diseases with care-
fully selected drugs provides a long-lasting
controlled chemical perturbation experi-

ment in a complex organism. Its readout includes
the regulated recording of side effects summa-
rized in the package inserts (also known as pa-
tient information leaflets or drug labels). Drug
side effects are complex phenomenological ob-
servations that have been attributed to a number
of molecular scenarios including the interaction
with the primary or additional targets (off-targets
hereafter), downstream pathway perturbations,
kinetic and dosage effects, drug-drug interference,
insufficient metabolization, effects of active me-
tabolites, and aggregation or irreversible target
binding of the drug (1). Of these, direct inter-
action with proteins seems to be one of the most
important scenarios (2, 3).

Although unexpected activities derived from
off-targets are usually unwanted and harmful,
they can sometimes be beneficial and have led
to new therapeutic indications for drugs. For in-
stance, sildenafil (Viagra, Pfizer Incorporated,
New York, New York) was developed to treat
angina, but its side effect of prolonged penile
erections in human volunteers led to a change in
the therapeutic area of the drug (4).

Similar side effects of unrelated drugs can
be caused by their common off-targets. For ex-
ample, the two dissimilar drugs cisapride and

astemizole both cause cardiac arrhythmias be-
cause they inhibit the cardiac ion channel hERG
in addition to their primary targets (serotonin and

histamine receptors, respectively) (5). In general,
drugs with similar in vitro protein binding pro-
files tend to cause similar side effects (6, 7),
implying a direct correlation between target bind-
ing and side-effect similarity and hence a pos-
sibility to predict off-target binding. So far,
additional targets for known drugs have been
systematically identified through phenotypic as-
says, by exploiting chemical similarity measures,
and through docking strategies [e.g., (8–12), re-
viewed in (13)]. All of these discoveries had their
bases in the analysis of cell assays or binding
studies and did not consider the entire human
system.

Therefore, we explored side-effect informa-
tion generated from the use of marketed drugs to
infer molecular activities of drugs that are not
implicit by their chemical similarity or the se-
quence similarity of their known targets. We
developed a measure for side-effect similarity
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Fig. 1. Breakdown of
drug pairs predicted to
share a target. (A) We
subjected the initial set
of 2903 to a series of
stringent filters, leaving
754 pairs that imply un-
expected drug-target
relations. In particular,
we filtered out pairs of
structurally similar drugs
(Tanimoto 2D similarity >
0.6) and drug pairs with
similar known targets
[normalized bitscore >
0.12, which corresponds
to ~28% sequence iden-
tity (fig. S6)] because
both molecular features
can be used indepen-
dently to infer targets
(13, 20–22). Thus, the
unexpected relations
contain combined contri-
butions from weak chem-
ical similarities and a
range of side-effect sim-
ilarities. (B) The subset of
drug pairs that are pre-
dominantly based on
strong side-effect sim-
ilarity [P value < 0.1
(15)] was used for net-
work analysis (Fig. 2).
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(fig. S1), analyzed the likelihood of sharing pro-
tein targets for 277,885 pairs of 746 marketed
drugs, and confirmed experimentally that side-
effect similarity indeed indicates common protein
targets of unrelated drugs. Thus, we are able to
propose additional targets formany existing drugs,
often implicated in different therapeutic categories.

To classify side effects, we used the Unified
Medical Language System (UMLS) ontology for
medical symptoms (14) and extracted relevant

terms from drug package inserts (15). We used
the relations between terms in the ontology to
capture also similarities between drugs annotated
with distinct but closely related terms. Not all
side effects are independent of each other; for
example, most drugs that cause nausea also cause
vomiting. We corrected for this redundancy by
weighting side effects in a manner analogous to
the down-weighting of similar protein sequences
within multiple alignments (15, 16).

The recorded side effects vary greatly in
abundance: Some, like megaloblastic anemia, are
caused by only a few drugs, whereas others, like
dizziness, occur for most. Within a reference set
of 502 drugs with 4857 known human drug-
target relations (15) from the Matador (17),
DrugBank (18), and PDSP Ki (Psychoactive
Drug Screening Program inhibition constant)
databases (19), we observed an inverse correla-
tion between side-effect frequency and the
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B Blood And Blood Forming Organs
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D Dermatologicals
G Genito Urinary System And Sex Hormones
H Systemic Hormonal Preparations...
J Antiinfectives For Systemic Use
L Antineoplastic And Immunomodulating Agents
M Musculo-Skeletal System
N Nervous System
P Antiparasitic Products...
R Respiratory System
S Sensory Organs
V Various
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Fig. 2. Network of drugs predicted to have common protein targets. (A) 424
drugs (nodes) form 1018 pairs with strong side-effect similarity and above 25%
probability of sharing a target (edges, width proportional to probability). Drug
subnetworks around the antiulcer drug rabeprazole and other experimentally
confirmed predictions are magnified. (B) Selected drug-target relations in the

subnetwork around rabeprazole (see fig. S10 for other drug-target pairs).
Predicted drug-target relations that were experimentally validated (Fig. 3) are
shown with green arrows; dashed red arrows indicate that the predicted targets
could not be confirmed. The confirmed relations are sufficient to prove the
predicted drug-drug relations in the rabeprazole subnetwork.
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likelihood of two drugs to share a protein tar-
get, and we weighted side effects accordingly
(fig. S1D).

A measure for side-effect similarity was es-
tablished by using these weighting schemes and
by incorporating statistical significance assess-
ments (15).We tested the predictive power of this
side-effect similarity measure on our reference
set of 502 drugs with known human targets and

observed a clear correlation between side-effect
similarity and the likelihood that two drugs share
a protein target (fig. S1H). Side-effect similarity
can thus be used to predict new targets for old
drugs.

Consistent with previous studies [e.g., (20–22)],
we observed in our reference set that chemically
similar drugs [according to the two-dimensional
(2D) Tanimoto chemical similarity score (15)]

are likely to have the same targets (fig. S1H).
The corresponding predictions showed only a
small overlap with those based on side effects:
In the reference set, only 35 drug pairs are in
common between the 198 and 301 pairs with
more than 50% probability of sharing targets
according to their side-effect similarity and chem-
ical similarity, respectively. Consequently, we
combined side-effect similarity and chemical
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Fig. 3. Novel drug-target relations. (A) Values of Ki for the 13 drug-target
relations were measured for those drugs that showed an in vitro binding
activity higher than 40% at 50 mM. When possible, drug-target relations were
validated in cell assays by measuring the activity of the compounds at 50 mM.
The asterisk denotes a candidate that was partially insoluble (fig. S8B). (B)
Concentration curves from competition assays for the novel drug-target

relations. (C) By using our reference set of 4857 drug-target relations (15), we
assigned probabilities on the basis of a combination of side-effect similarity
and chemical similarity. The line delimits the area used to construct the
network in Fig. 2 with shared target probability >25% and side-effect sim-
ilarity P value < 0.1. Drug pairs that were experimentally confirmed to share a
target are denoted by black and gray dots according to Ki value [see (A)].
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similarity and benchmarked the result against
our reference set to obtain the final probabilities
for any two drugs to share a protein target (15).
Both specificity and sensitivity improved con-
siderably (fig. S3).

We next applied our target prediction method
to a larger set of 746 human-marketed drugs for
which side-effect information is available (table
S1), including 244 drugs that have no annotated
human targets in our reference set (for example,
antibiotics). After exclusion of 44 drugs with less
than seven side effects (too few to make specific
predictions) (fig. S4), we predicted 2903 pairs of
drugs to share a target with over 25% probability
(Fig. 1A and fig. S5). We use this arbitrary 25%
cutoff in the following because, above this value,
the combined method was more sensitive than
chemical similarity or side-effect similarity alone
(fig. S3D). The actual chance of sharing a target
is likely to be higher than our scoring scheme
indicates because many binding partners for
known drugs are not known yet and were thus
counted as false negatives in our benchmarks.
Among the 2903 predicted pairs, 956were known
to have common targets (Fig. 1A), which is five-
fold higher than what would be expected by
random chance (15). From the remaining 1947
drug pairs that imply novel predicted interactions,
we removed 1193 drug pairs that could be ex-
pected to share targets because the drugs are in
related indication areas, are chemically similar, or
have similar targets (Fig. 1A and fig. S6) (13, 15).
Thus, we predicted unexpected, shared targets for
754 drug pairs.

To get an overview of the subset of pre-
dictions that are driven by side-effect similarity
(1018 of the total 2903 predictions, Fig. 1B), we
constructed a network of the corresponding 424
drugs with at least 25% probability of sharing a
target (Fig. 2; see fig. S7 for the complete net-
work from all predictions as depicted in Fig. 1A).
Of these, 261 pairs were examined in more detail
because they involved dissimilar drugs from dif-
ferent therapeutic indications (“unexpected rela-
tions” in Fig. 1B and table S2).

We focused on areas in the network that con-
tain drugs from different therapeutic categories
(Fig. 2). For example, there is a subnetwork of
several drugs targeting the nervous system around
the antiulcer drug rabeprazole, a proton pump
inhibitor. Within this subnetwork, five drug pairs
were predicted to share targets with a probability
in the range from 30 to 75%, four of which in-
volve rabeprazole. We validated all our predic-
tions in this subnetwork with both in vitro and
cell assays (Fig. 3). We found that rabeprazole
inhibits the dopamine receptor DRD3 and binds
the serotonin receptor HTR1D (Fig. 2B). The ner-
vous system drugs pergolide, paroxetine, and
fluoxetine share these targets with rabeprazole
(Fig. 2B), whereas zolmitriptan seems to have
only its primary target, serotonin receptorHTR1D,
in common with rabeprazole (Fig. 2B). Taken
together, the sharing of side effects of the proton
pump inhibitor rabeprazole revealed two nervous

system off-targets with affinities (Fig. 3) that have
been shown to cause side effects (23) and should
be physiologically relevant given rabeprazole’s
plasma concentrations (24). Our experimental val-
idations also imply that all drug-drug associations
in this subnetwork (Fig. 3B) are indeed caused by
shared targets.

To generalize our validations, we experimen-
tally tested predictions derived from another 15
drug pairs in addition to the five predictions
around rabeprazole (Fig. 2A). All predictions
involve at least one drug with a human target and
are from the “unexpected” category (261 candi-
date pairs comprising dissimilar drugs from dif-
ferent indication areas in Fig. 1B). In total, for 13
of the 20 pairs tested, we confirmed binding ac-
tivity to at least one of their predicted targets in
vitro (Fig. 3 and figs. S8 and S9). Eleven of the
observed binding affinities are strong enough to
lead to side effects [median inhibitory concen-
trations < 50 mM (23)], 11 can be considered bio-
logically active [inhibition constant (Ki) < 10 mM
(12)], and 7 appear relevant in vivo (Ki values
within one order of magnitude of the measured
average drug plasma concentrations, table S3).
For 9 of the 13 drug-target relations with in vitro
activity, cell assays were available, and all con-
firmed the predicted activity (Fig. 3). Both the
observed phenotypic similarity (shared side ef-
fects) that led to these predictions and the cellular
activities confirmed here support the possible
physiological relevance of the newly identified
drug-target relations.

All verified predictions imply binding of exist-
ing drugs to proteins associated with different
therapeutic categories. For example, we have
found a relation between the nootropic drug
donepezil and the antidepressant venlafaxine
(Fig. 2B). Indeed, it has been proposed that
donepezil can be used to treat depression (25).
Although it is still unclear whether the activities
we found are sufficient for direct medical appli-
cations, the respective drugs certainly can be used
as leads for further optimization toward new tar-
gets (26–28).

Many aspects of the current method can be
improved (15); for example, the inference of the
shared target between drug pairs involves a man-
ual step, and we also cannot relate the target to
particular side effects. Yet, when taking into ac-
count each individual probability of sharing a drug
target, the 1947 predicted drugs pairs with >25%
probability (Fig. 1A) roughly translate into 860
true drug-drug relations, each implying at least
one new off-target protein, more than two-thirds
of them in distinct therapeutic categories. The
numerous off-targets for marketed drugs suggest
that many of them have a broader spectrum of
targets with physiological relevance than expected.

The use of direct readouts (side effects) of a
perturbed human system to reveal molecular drug-
target interactions should be applicable in a num-
ber of ways. First and foremost, existing drugs
could be routinely checked for additional hidden
targets and potential use in different therapeutic

categories. Newly uncovered off-target effects
will provide insights into the molecular basis of
the drug’s side effects but will also increase the
reference set, which, in turn, then helps improv-
ing the method. The strategy could also be used
in a preclinical setting through integration of can-
didate drugs into the network presented here or
through application to animal models.
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