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Abstract 

Motivation: A promising strategy for refining genome annotations is to detect features 

that conflict with known functional or evolutionary relationships between groups of 

genes. Previous work in this area has been focused on investigating the absence of 

“housekeeping” genes or components of well-studied pathways. We have sought to 

develop a method for improving new annotations that can automatically synthesize and 

use the information available in a database of other annotated genomes. 

 

Results: We show that a probabilistic model of phylogenetic profiles, trained from a 

database of curated genome annotations, can be used to reliably detect errors in new 

annotations. We use our method to identify 22 genes that were missed in previously 

published annotations of prokaryotic genomes. 

 

Availability: The method was evaluated using MATLAB and open source software 

referenced in this work. Scripts and datasets are available from the authors upon request. 

 

Contact: tarjei@broad.mit.edu 
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Introduction 

The first step in understanding a newly sequenced genome is to identify its genes and 

their putative functions. Unfortunately, current homology-based annotations of protein-

coding genes remain far from perfect, even for relatively simple bacterial genomes 

(Brenner 1999; Devos 2001, Bocs 2002, Iliopoulos 2003). Broadly speaking, their 

shortcomings can be divided into two categories. First, as many as 40% of predicted 

genes in most bacterial genomes remain annotated as ‘hypothetical’ or ‘unknown’ 

proteins. Second, even for genes that do have significant database matches to known 

genes, systematic errors in the annotation methods themselves, such as software defects, 

unrealistic statistical models, and failure to distinguish functional genes disrupted by 

sequencing errors from pseudogenes, can lead to annotation inaccuracies. Here, we 

describe a statistical method designed to detect the latter type of errors. 

 

A promising strategy for refining genome annotations is to take into account functional or 

evolutionary relationships between groups of genes. Genomes continually evolve through 

gene transfer, duplication and loss. However, the presence or absence of specific genes in 

a genome is generally not arbitrary, but reflects functional and structural dependencies 

between the proteins they encode. For example, metabolic enzymes are the building 

blocks of biochemical pathways that would be inactive, and perhaps even fatal to the 

organism, if incomplete. Other genes encode connected and interdependent 

subcomponents of large complexes, such as ribosomes and flagella. Because incomplete, 

non-functional metabolic pathways and cellular complexes confer little evolutionary 

benefit to an organism, groups of functionally or structurally linked genes tend to be 



4

either present in their entirety or completely absent (Pellegrini 1999). As a consequence, 

unexpected co-occurrence patterns (‘phylogenetic profiles’ after Pellegrini et al.) may 

point towards systematic errors in an annotation. If only one gene from a group of co-

occurring genes is missing in an annotation, there is reason to suspect that it is a false 

negative that has somehow been overlooked by the annotation system. Similarly, if only 

one gene from a co-occurring group is present, it may be a false positive. 

 

Several groups have demonstrated the utility of gene dependencies in improving genome 

annotations, using varying degrees of phylogenetic and functional information. Methods 

for inferring missing genes from well-studied gene families were developed long before 

the first complete genomes were sequenced (Goodman 1979; Page 1994). These methods 

use character-based approaches to find genes whose presence or absence are inconsistent 

with a known phylogeny. More recently, Natale et al. (2000) reported finding novel 

genes in previously annotated bacterial genomes by examining specific unexpected 

phylogenetic patterns, such as a gene being present in all but one of the genomes, in the 

Clusters of Orthologous Groups (COG) database. Karp (2001) has developed a symbolic 

framework for inferring missing genes in known metabolic pathways, relying primarily 

on functional dependencies rather than phylogenetic information.  

 

In this work, we present Phylogenetic Profile Anomaly Detection (PPAD), a 

computational framework for annotation refinement.  We first generate a probabilistic 

model of expected phylogenetic profiles from the growing databases of existing genome 

annotations. The dependency model is encoded as a Bayesian network (Pearl 1988), 
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which has been shown to be a principled and powerful tool for integrating heterogeneous 

information and for modeling uncertainty and noise in biological systems (Delcher 1993; 

Friedman 2000; Hartemink 2001; Stuart 2003; Troyanskaya 2003). The model essentially 

encodes a set of probabilistic rules that predict the presence or absence of a gene, given 

the presence or absence of a small number of other genes. We then use this dependency 

model to identify statistical anomalies in new annotations that signal the presence of 

unexpected components in their phylogenetic profiles or, potentially, systematic errors.  

 

Our PPAD method extends and generalizes the methods mentioned above in the 

following ways: 

• The inputs and outputs are probabilistic, allowing explicit modeling of uncertainties. 

• The probabilistic dependency model is better suited for modeling noisy biological 

correlations than logical rules or ad hoc pattern matching. 

• All or part of the dependency model can be efficiently learned directly from existing 

annotations and other relevant data sets.  

Unlike the true phylogenetic methods of Goodman et al. (1979) and Page et al. (1994), 

the version of PPAD presented here does not consider the phylogenetic relationships 

between the species used to learn the dependency model. This has the potential advantage 

that lateral gene transfers, which appear to be common in the bacterial kingdom (Mirkin 

2003; Peregrin-Alvarez 2003; Hao 2004), are not considered anomalies as long as they fit 

an expected co-occurrence pattern. 
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We show through simulations that our method can reliably improve on the accuracy of 

genome annotations to which artificial errors have been added. We also identify 22 

previously missed genes by applying the PPAD method to bacterial genome annotations 

from GenBank. 

 

Methods 

Problem domain and definitions 

We define the genome annotation task as the problem of assigning descriptive labels to 

every predicted gene in a genome. We denote the set of available labels 

{ }1 2, , , ,NG G G G NA= K . The NA label is used to designate “no assignment” for genes 

for which no other label in G is applicable. In the context of homology based annotations, 

the labels are the names of known genes or gene families that have been identified or 

characterized previously.  

 

In this work, we use the database of Clusters of Orthologous Groups (COG) as our 

reference source of descriptive labels (Tatusov 2003), although the method applies 

equally well to any other protein classification scheme. A COG is defined as a set of 

predicted orthologous genes identified in three or more species, where at least one species 

is a prokaryote. The database contains COGs covering 25 major functional categories, as 

well as curated annotations of 50 bacterial genomes. We focus on the annotation of genes 

with information processing and storage functions, such as transcription, translation and 

replication. There are 731 such COGs, and thus in our notation 731N = and iG
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corresponds to the ith COG in functional categories A, B, J, K and L, as defined in the 

COG database (http://www.ncbi.nlm.nih.gov/COG/new/). 

 

For a genome we wish to annotate, we define a binary vector of length N, where the ith 

entry is 1 if at least one gene in the genome is best described by label iG , and 0 

otherwise. This vector, denoted g , is equivalent to a phylogenetic profile, as first 

introduced by Gaasterland (1998) and Pellegrini (1999). A genome annotation, which 

assigns labels to each gene in the genome, implicitly defines a phylogenetic profile 

indicating which of the available labels in G have been used in that annotation. This 

phylogenetic profile can be evaluated against a probabilistic model of dependencies 

between genes to identify potential errors and inconsistencies. 

 

A Bayesian network model of gene dependencies 

We utilize a Bayesian network (Pearl 1988; reviews in Charniak 1991 and Cowell 1998) 

to capture and represent dependencies between gene families as we observe them in a set 

of trusted phylogenetic profiles, D. The nodes in the Bayesian network are a set of binary 

random variables { }1 2
ˆ ˆ ˆ ˆ, , , NG G G G= K , corresponding directly to the entries of the 

phylogenetic profiles introduced above (Figure 1a). Edges between nodes describe a 

directed acyclic graph and define a set of conditional independence relations between the 

binary variables. The probability distribution associated with each random variable 

depends only on the parent nodes in the graph (Figure 1b). The complete Bayesian 

network DB therefore represents a probability distribution over all possible phylogenetic 

profiles, given D:
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( ) ( )( )
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The structure and parameters of a Bayesian network that captures the dependencies in D

can be estimated using a variety of learning algorithms. Here, we use a greedy hill-

climbing approach, as implemented by the LibB software package (Friedman and Elidan, 

http://www.cs.huji.ac.il/labs/compbio/LibB/). Starting from an unconnected network, the 

learning algorithm computes which single structural modification (edge addition, removal 

or inversion) will optimize the Bayesian Information Criterion (BIC) score. The BIC 

score of a network is the log-likelihood of the training data, given the network, minus a 

complexity penalty to prevent over-fitting. The penalty depends on d, the number of 

parameters in the model: 

 ( ) ( )BIC log | log
2
dB P D B N= −

The learning algorithm iteratively applies the best modification to the Bayesian network 

until the BIC score converges. Although this greedy approach is not guaranteed to find a 

globally optimal model, it tends to perform well in practice (Heckerman 1995). The end 

result of this learning procedure is a Bayesian network that assigns low probabilities to 

phylogenetic profiles that are inconsistent with the gene dependencies observed in the 

training set. Thus, if the resulting phylogenetic profile for a newly annotated genome is 

deemed highly unlikely by our trained Bayesian network, then either the new genome is 

very different from anything we have seen before, or the genome annotation is flawed.  

Note that we explicitly assume that each phylogenetic profile in the training set is equally 

informative, and that the training set is a random sampling from some underlying 

probability distribution of correct annotations. This is a naïve assumption that simplifies 
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the learning procedure, but which may result in uninformative predictions if the species 

included in the training set are not sufficiently diverse. More complex variants of PPAD 

can be developed to take full advantage of known phylogenetic relationships between the 

species included in the training set. 

 

Detecting potential errors in a phylogenetic profile 

To detect potential errors in a genome annotation, we consider the phylogenetic profile 

Ig implied by the annotation. We then make explicit our confidence in the entries of this 

initial phylogenetic profile in terms of probabilities. In general, each assignment in Ig

can have its own degree of confidence, but in this work we use a simple two-parameter 

model where α is the probability that a label that is called present in the initial annotation 

is actually absent (the assumed false positive rate), and β is the probability that a label 

that is called absent is actually present (the assumed false negative rate): 

 
( )
( )

,

,

ˆ1 0

ˆ0 1

I i i

I i i

g P G

g P G

α

β

= → = =

= → = =

By incorporating our confidence in the initial phylogenetic profile as virtual evidence 

(Pearl 1988), we can compute the most probable (MPE) phylogenetic profile MPEg given 

this information and DB as the Bayesian prior probability distribution over possible 

phylogenetic profiles: 

 ( )arg max | , , ,MPE D I
g

g P g B g α β=
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We find an exact solution to this optimization problem using the junction tree inference 

algorithm (Dawid 1992), as implemented in the Bayesian Network Toolbox for Matlab 

(Murphy 2001) and then compare each entry in MPEg to the corresponding entry in Ig .

Discordances between the most probable and the initial phylogenetic profiles represent 

features in the initial profile that are statistically anomalous according to our Bayesian 

network model of gene dependencies, and may therefore correspond to annotation errors. 

For example, the presence of a label in the MPE profile, but not in the initial profile, 

signals that the annotation pipeline may have missed that label. However, it is important 

to note that it is not possible to distinguish between annotation errors and unexpected 

evolutionary events a priori. The statistically anomalous presence or absence of that 

particular label may also be due to a recent gene loss event in the species or strain we are 

annotating, or it may simply be a result of the species being significantly different from 

the set of species from which our Bayesian network was learned. Any discordance is 

therefore a hypothesis that can be tested by re-evaluating the relevant evidence, and, if 

necessary, follow-up experiments.  

 

Results 

Improvement over simulated annotations 

We evaluated the ability of the PPAD method to improve upon inaccurate initial 

annotations by performing a series of simulated "leave-one-out" tests. We induced a 

Bayesian network from the curated annotations in the COG database, leaving one species 

out of the training set. If the database contained annotations of more than one strain of the 
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same species, we removed all such strains to avoid over-fitting. We then simulated 

inaccurate annotations by randomly adding and removing entries from the phylogenetic 

profiles of the species that were left out. Finally, treating the original COG annotations as 

"correct", we calculated the pair-wise number of differences (the Hamming distance) 

between them and the simulated profiles and the computed MPE profiles. We repeated 

this process 20 times for each species and for each set of parameters. 

 

The PPAD method improved upon the simulated annotations in 582 of 600 trials (97%) 

where either the false positive or the false negative rate of the initial profile was greater 

than 0.01. For each of the species listed in Table 1, the first row of column A shows the 

mean increase in the number of correct COG calls in the MPE profiles relative to the 

simulated initial profiles. With false positive and false negative rates of 0.1 in the initial 

profiles, we saw roughly 40 corrected COG calls for all five species, which is 5.5% of the 

731 COGs we considered. All positive differences are statistically significant (p<10-3,

Mann-Whitney U). We obtained similar results for the species not shown here. 

 

We note that the PPAD method is dependent on accurate error rate estimates. The 

columns marked B in Table 1 show the results of setting α and ß to values that differed 

significantly from the actual error rates. In these cases we saw little or no improvement in 

the MPE profiles. In practice, α and ß can be estimated from the significance values 

returned from the sequence alignment tools used to compute the initial annotation. The 

assumed error rates can also be increased or decreased to obtain more or less conservative 

MPE profiles. 
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Improvement over nearest-relative profiles 

We also compared the MPE profiles from our leave-one-out tests to the most closely 

related species present in the corresponding training sets. Given the amount of genomic 

variation across the bacterial kingdom, it is not immediately evident that comparing an 

initial annotation to the MPE profile is better than simply comparing it to the closest 

sequenced relative, which is common practice. If MPE profiles tend to make predictions 

consistent with “averaged genomes”, they might not fit any real species particularly well. 

We found that this was not the case.  

 

The MPE profiles were more similar to the unmodified “correct” COG annotations than 

to the most closely related species in the training set in every one of 600 simulations 

where either the false positive or the false negative rate of the initial profile was less than 

0.1. For all five species shown in Table 1, the difference between the MPR profile and 

the corresponding nearest-relative profile increased with decreasing error rates (column 

A). This was true even with poor error rate estimates (column B).  

 

Identification of 22 new genes 

We searched for annotation errors in the COG database by repeating our leave-one-out 

tests, but without adding simulated noise to the initial annotations, and without removing 

highly similar profiles from the training sets. Because the COGs are themselves defined 

as part of the annotation process (Tatusov 1997), we expected very few or no false 

positive assignments. However, the input peptide sets might not have been complete. To 



13

search for evidence of missed genes we therefore assumed a very low false positive rate 

(α = 0.001) and a moderately high false negative rate (β = 0.1).  

 

The PPAD method predicted the presence of a total of 244 additional genes in the 50 

curated annotations, a predicted increase of 2% for the number of genes in these species. 

We examined these predictions by using TBLASTN to align known members of the 

missing COGs to the complete genomic sequence of the genomes from which they were 

predicted to be missing. If a significant alignment was found, we determined whether it 

corresponded to a complete open reading frame, and compared its location to the 

GenBank annotation of the genome to see if it overlapped a known feature.  

 

In the end, we were able to confirm 22 annotation errors across 10 bacterial genomes 

using TBLASTN sequence alignments alone. This set, as shown in Table 2, was 

dominated by ribosomal proteins. In particular, we found 9 missing ribosomal genes in A. 

tumefaciens, suggesting systematic under-detection of ribosomal genes in the original 

annotation of this genome (Goodner 2001). A similar pattern was found by Natale et al. 

(2000) in their analysis of an earlier version of the COG database, suggesting that under-

detection of ribosomal genes may be a systematic error in several annotation systems, 

perhaps due to their short length. 

 

We also found that a number of the remaining predicted genes were present in the 

examined genomes as pseudogenes and consequently left out of the COG database, 

which only catalogues functional genes. For M. leprae, a species known to have 
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undergone extensive gene loss (Cole 2001), we found that 6 out of 8 genes predicted to 

be present were pseudogenes annotated elsewhere. Because detectable pseudogenes are 

likely to have been deactivated in recent evolutionary history, they may be as statistically 

anomalous as annotation errors, but may also be actual genes that have been obscured by 

sequencing errors or strain polymorphisms. Additional laboratory work will be required 

to distinguish these alternatives. Finally, we note that since our Bayesian network only 

modeled a subset of the COGs, we expect that there may be additional missing genes in 

other functional categories. 

 

The set of 244 PPAD predicted genes were significantly enriched for confirmable 

annotation errors. By repeating the TBLASTN analysis for 5 randomly picked sets of 244 

genes absent in the initial COG annotations, we could only confirm a total of 7 missing 

genes (p < 10-12 by Fisher’s exact test), of which 5 were also found using PPAD. The 2 

genes not found using PPAD were COG2094 and COG2167 in C. glutamicum.

Discussion 

We have described a methodology for improving whole-genome annotations using a 

probabilistic model of gene co-occurrence patterns. Unlike earlier ad hoc analyses of 

unexpected phylogenetic profiles, the PPAD method is formulated within a principled 

probabilistic framework. PPAD can be incorporated into existing annotation pipelines to 

spot potential systematic errors and assist manual annotators. The fact that the 

annotations we examined and improved upon were published, best effort annotations 

shows the value of such independent quality controls. 
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We note that there are many potential avenues for follow-up and improvement on the 

results presented here. For example, it would be desirable develop a better quantitative 

understanding of both the potential and the limitations of phylogenetic information in this 

context. Recent evolutionary innovations and species-specific adaptations cannot be 

distinguished from true errors by a method that relies on historic correlations. However, it 

is currently unclear whether the numbers of false predictions encountered in this and 

related methods (Natale 2000; Paley 2001; Zheng 2002) can be lowered by using better 

training sets and explicit models of phylogenetic relationships between the species in the 

training set, or whether they are absolute limits set by the phylogenetic and functional 

plasticity of gene families (Mirkin 2003; Peregrin-Alvarez 2003).  

 

A pragmatic strategy for improvement might be to assess the statistical significance of 

each component of the probabilistic model and avoid making predictions based on 

uncertain parameters. Several such strategies have been developed in other contexts, such 

and gene expression analysis (Pe’er 2001). More sophisticated learning algorithms, such 

as simulated annealing, might also be helpful in improving the predictive power of the 

models.  

 

Finally, it appears worthwhile to develop models with more problem specific semantics 

or constraints. One promising possibility is a hierarchical or noisy-or model (Pearl 1988) 

where the observable variables, which indicate the presence and absence of genes, only 

depend on a smaller set of hidden variables that indicate the presence or absence of 
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particular functional pathways, cellular complexes or other higher-level biological 

features. It would also be possible to use other annotation labels such as enzymatic 

activities, instead of protein families, analogous to the pathway inference systems 

developed by Karp et al. (2001). 
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Table 1 Mean increase in the number of correct COG annotations in the MPE profiles 

 
(A) Accurate α and β (B) Inaccurate α and β1

False positive rate 0.1 0.05 0.1 0.05 0.05 0.01 0.01  0.05 / 0.01 0.01 / 0.05 

False negative rate 0.1 0.1 0.05 0.05 0.01 0.05 0.01  0.01 / 0.05 0.05 / 0.01 

 

C. trachomatis  

vs. simulated 43 37 25 19 14 3 -1  -2 -1 

vs. nearest relative 15 17 21 24 27 28 34  10 28 

 

H. pylori  

vs. simulated 48 43 27 19 17 2 0  0 2 

vs. nearest relative -3 1 3 5 10 11 14  -8 10 

 

M. tuberculosis  

vs. simulated 36 30 22 14 12 -2 -3  -8 0 

vs. nearest relative 18 22 23 30 37 31 40  17 33 

 

N. meningitides  

vs. simulated 38 31 23 15 10 4 -1  -2 -4 

vs. nearest relative 15 20 26 29 35 39 42  23 30 

 

S. pyogenes  

vs. simulated 33 30 17 16 11 2 -4  -3 -3 

vs. nearest relative -3 5 4 13 18 19 23  6 16 

1 (Assumed/actual) 
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Table 2 Genes predicted by PPAD and confirmed by manual inspection 

 
Organism COG Function RefSeq Start End 

COG0051 Ribosomal protein S10 NC_003062 1915207 1915515

COG0186 Ribosomal protein S17 ‘’ 1910264 1910500

COG0230 Ribosomal protein L34 ‘’ 378081 378218

COG0238 Ribosomal protein S18 ‘’ 1081552 1081800

COG0267 Ribosomal protein L33 ‘’ 1288873 1289040

COG0360 Ribosomal protein S6 ‘’ 1081814 1082275

COG0594 RNase P protein component ‘’ 377661 378044

COG1841 Ribosomal protein L30 ‘’ 1906183 1906389

COG0227 Ribosomal protein L28 NC_003063 1402503 1402793

A.. tumefaciens 

COG0257 Ribosomal protein L36 ‘’ 1236507 1236632

B. melitensis COG3905 Transcriptional regulator NC_003317 1568957 1569217

C. acetobutylicum COG0024 Methionine aminopeptidase NC_003030 3258093 3258845

COG0230 Ribosomal protein L34 NC_003454 642502 642636

COG0257 Ribosomal protein L36 ‘’ 1944372 1944485

F. nucleatum 

COG1758 RNA polymerase subunit K/ω ‘’ 537211 537435

L. innocua COG0219 rRNA methylase NC_003213 964790 965299

L. lactis COG0758 DNA uptake protein NC_002662 1253570 1254037

M. leprae COG0227 Ribosomal protein L28 NC_002677 2018906 2019100

M. pulmonis COG0551 Topoisomerase Zn-domain NC_002771 567947 569824

COG0317 Guanosine hydrolase/synthetase NC_000963 382806 383495R.. prowazekii 

‘’ ‘’ ‘’ 796030 796782

S. pyogenes COG0590 Cytosine/adenosine deaminases NC_002737 187765 188280
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Figure Legends 

Figure 1 We model evolutionary dependencies between COGs as a Bayesian network. 

The Bayesian network consists of a graph representation of the qualitative dependencies 

(a) and a set of associated probability distributions. For example, the absence or presence 

of COG4567 depends on COG5631 and COG3905. The conditional probability 

distribution associated with COG4567 (b) assigns a high probability to the presence of 

COG4567 in any genome that contains either COG5631 or COG3905. 
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