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■ Abstract DNA microarrays have enabled biology researchers to conduct large-
scale quantitative experiments. This capacity has produced qualitative changes in the
breadth of hypotheses that can be explored. In what has become the dominant mode of
use, changes in the transcription rate of nearly all the genes in a genome, taking place in
a particular tissue or cell type, can be measured in disease states, during development,
and in response to intentional experimental perturbations, such as gene disruptions and
drug treatments. The response patterns have helped illuminate mechanisms of disease
and identify disease subphenotypes, predict disease progression, assign function to
previously unannotated genes, group genes into functional pathways, and predict ac-
tivities of new compounds. Directed at the genome sequence itself, microarrays have
been used to identify novel genes, binding sites of transcription factors, changes in
DNA copy number, and variations from a baseline sequence, such as in emerging
strains of pathogens or complex mutations in disease-causing human genes. They also
serve as a general demultiplexing tool to sort spatially the sequence-tagged products
of highly parallel reactions performed in solution. A brief review of microarray plat-
form technology options, and of the process steps involved in complete experiment
workflows, is included.
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INTRODUCTION

The closest ancestors to DNA microarrays were the spotted arrays on nylon of
the 1980s and early 1990s (1). These held bacterial colonies carrying different
cosmid genomic inserts and later held preidentified cDNAs, with spacings down
to ∼2 mm. Hybridization of complex RNA samples to known cDNAs on these
arrays was exactly analogous to the current “expression profiling” use mode of
microarrays. The expression profiling use mode has become the dominant one due
to the wealth of functional information provided about the biological sample being
analyzed. Because full or partial transcript sequences are now available for nearly
all genes in the most commonly studied organisms, the new high-density arrays
can provide genome-wide response profiles for the changes in transcription rate
associated with drug treatments, disease states, phenotypic differences, and mu-
tations. The results of keyword searches for 1990 through 2003 show the growth
in PubMed publications significantly involving DNA microarrays (Figure 1). The
catchy concept of “DNA chips” as a confluence of infotech and biotech has con-
tributed to the sudden fame of DNA microarrays, but this fame is deserved on the
basis of rapidly widening scientific usage and results.

The term expression profiling also can apply to measurements of protein con-
centrations, which arguably are more directly related to cell function than are the
mRNA messages. But it has proven technically more difficult to achieve the equiv-
alent of genome-wide profiling of proteins (2, 3). Besides their inherent fragility
in the most accessible human sample types, such as blood cells and serum, the
range of abundances between the least abundant functional protein species and
the most abundant is several orders of magnitude greater than in the case of mR-
NAs. Technologically, proteomic profiling lags several years behind in the depth
of coverage currently achievable with DNA microarrays. Also, it is increasingly
appreciated that mRNA response profiles are not just surrogates for the corre-
sponding protein levels; rather they show the adjustment of the cell to individual
protein functional disruptions (4), even if protein levels are unchanged. Conse-
quently, the mRNA window into cell function is and should remain a very powerful
one.

Although mRNA expression profiling is the dominant use mode for DNA mi-
croarrays, several others, found by analysis of genomic DNA sequence, are notable
and are listed in Table 1. Microarrays are inherently a means of spatially sorting
molecular species so that their concentrations can be independently estimated;
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Figure 1 PubMed references found with keyword searches of the title and abstract fields.
Red: (DNA microarray) or (DNA chip) or (expression array). Green: (microarray or chip)
and (sequencing or resequencing or genotype). After 1996 the first search was modified
by dropping the “DNA” in “DNA microarray.” Before 1996 the second group in the second
search was expanded with “or genome” to catch two early references. The expression profiling
application quickly became dominant.

potential applications therefore include analysis of any complex reaction prod-
uct. For example, large numbers of single nucleotide polymorphisms (SNPs) can
be determined in parallel, using microarrays as the final stage in the process (5).
Then genetically bar-coded strains of yeast are competitively grown, and their final
concentrations read out by hybridization of the bar codes to an array (6).

This is intended more as a “why-to” than a “how-to” review. But because it is
still essential to understand the technology in order to design experiments and in-
terpret data effectively, the next section discusses the different types of microarray
platforms and associated process steps. The applications section describes exam-
ples of expression profiling and is followed by a section containing examples of
genomic DNA analysis. Finally, trends in usage and potential future applications
are discussed.

MICROARRAY TECHNOLOGY PLATFORMS
AND PROCESS

A complete generic process diagram for microarray experiments is shown in
Figure 2. Setting up a robust complete microarray experiment process by as-
sembling individual components is a challenge. The larger vendor corporations,
such as Affymetrix, Agilent Technologies, and the GE Healthcare division of Gen-
eral Electric, provide suites of components, reagents, and services. For example,
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TABLE 1 Modes of use for DNA microarrays

Purpose Target sample
Multiplexed
reactions

Demultiplexing probes
on array

Expression
profiling

mRNA or totRNA
from relevant cell
cultures or tissues

Amplification of all
mRNAs via some
combination of
RT/PCR/IVT

Single- or
double-stranded DNA
complementary to
target transcripts

Pathogen
detection and
characterization

Genomic DNA from
microbes

Random-primed
PCR, or PCR with
selected primer
pairs for certain
target regions

Sequences
complementary to
preselected
identification sites

Genotyping Genomic DNA from
humans or animals

Ligation/extension
for particular SNP
regions, and
amplification

Sequences
complementary to
expected products

Resequencing Genomic DNA Amplification of
selected regions

Sequences
complementary to each
sliding N-mer window
along a baseline
sequence and also to
the three possible
mutations at the central
position

Find protein-DNA
interactions

Genomic DNA Enrichment based
on transcription
factor binding

Sequences
complementary to
intergenic regions

Affymetrix supplies predesigned arrays for human, mouse, rat, and some microbial
genomes along with the reagents and protocols for performing the required am-
plification, hybridization, washing, and scanning steps. They also provide a public
Web site with up-to-date annotations for the transcript sequences for which their
array probes are designed in addition to a suite of bioinformatic tools for analyzing
the data.

Microarray Manufacturing Technologies

Technical approaches to manufacture the arrays themselves are described concisely
in chapters in Baldi & Hatfield (7) and in Stekel (8). See also the review by Heller
(9). Figure 3 compares feature densities of the progenitor nylon spotted arrays and
two modern methods. Tables 2a and 2b list the main vendors for the available array
types and some of the advantages and limitations associated with these products.
Table 2a covers in situ synthesis methods, while Table 2b covers methods based
on deposition of presynthsized oligos and cDNAs. The light-directed synthesis
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Figure 2 Process flow for microarray experiments. Note that we have used the word
“probe” to refer to the reporter sequence placed at a particular position on the microarray
because it interrogates the sample for the presence of its reverse complement and
also because the microarray market leader, Affymetrix, has adopted this definition.
Historically probe has referred instead to the biological sample.

Figure 3 Feature density of representative microarrays. Each image shows a 2.7 mm
square subregion. (a) Bacterial colony spots on nylon from the 1980s. (b) Ink-jet in situ
synthesized 60-mer oligo spots on glass. (c) Affymetrix human gene array with 18-µ fea-
tures containing 25-mer oligos. Affymetrix chips now are available with 11-µ features.
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methods, both photolithographic (10) and digital micromirror-based (11), have the
potential to achieve feature sizes not much larger than a wavelength of light. This
should enable substantial further reductions in cost and in hybridization volume
with consequent reduction in amount of biological sample required. In situ ink-
jet synthesis (12) should have a valuable niche for rapid turnaround of custom
arrays in small lots, unless it is overtaken by the micromirror technologies. During
optimization of the ink-jet synthesis technology (12), it was shown that 60-mers
allowed a much better sensitivity-specificity trade than shorter oligos. In light-
directed synthesis, failure of photodeprotection at any stage terminates the oligo.
The yields per stage in the Affymetrix synthesis process are such that attempts to
make 60-mers would result in very few of them running to even half that length
(13); Affymetrix settled on 25-mers partly for this reason. Their use of multiple
probe pairs to estimate the abundance of each target transcript is driven partly by
the need to make up for the performance limitations of 25-mers. Ink-jet synthesis
yields are ∼98% per stage with chemical deprotection, as opposed to ∼95% for
photodeprotection (13), allowing the ink-jet technology to be optimized with longer
oligos and higher stringency hybridization conditions.

Presynthesis of oligos or cDNAs has the important advantage that the sequences
eventually placed on the array can be exactly those desired. Pen tip spotting meth-
ods (14, 15) will continue to be a relatively low-tech but robust and affordable
method for small laboratories to generate their own arrays with a moderate num-
ber of features and have the capability of spotting DNA of an unknown sequence.
Ink-jet methods also can be used to print presynthesized oligos.

In a true synthesis of microelectronics and molecular biotechnology, Nanogen
and CombiMatrix have incorporated electrodes in their arrays to direct synthesis.
In Nanogen’s case, the primary application of electrodes is to drive hybridization.

Other methods of spatial demultiplexing not listed in Table 1 are worth mention.
Universal arrays adopt a fixed set of orthogonal probe sequences and conjugate
their complements to problem-specific ligands (5, 16) or adopt a complete set of
short N-mers and interpret all samples in terms of the hybridization pattern to these
(17). Such approaches avoid the need to redesign the array for each application.
The former potentially achieves better control over the hybridization step at the
expense of added process complexity. Fiber optic bundles terminated with beads
conjugated to specific probes can be used as arrays (18, 19) and are being pro-
duced by Illumina primarily for parallel genotyping application. Finally, individual
beads conjugated to specific probes can be localized in a flow cytometry configu-
ration and identified via unique color tags (20), as in the system being offered by
Luminex.

Probe Design

Most array vendors offer standard array probe sets for some or all of the most
common model organisms, such as mouse, rat, yeast, and human, and in this case,
the problems of choosing target sequences and designing probes are taken out of
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the user’s hands. In the case of custom arrays, the customer can contribute different
levels of detail to the design: a target gene list, a list of target transcript sequences,
the actual probe sequences to be synthesized, or even complete specification of
all probe and control sequences and their spatial layout on the array. This choice
involves considering the customer’s bioinformatic capabilities compared to those
of the array vendor and, of course, the price of the vendor services.

Commercial software, such as ArrayDesigner (Premier Biosoft International),
TILIA (Linden Biosciences), and free software (21), exist to aid in probe design.
Stekel (22) summarizes sequence database resources and probe design princi-
ples. The chosen array technology and baseline amplification and hybridization
protocols constrain the design as to probe length, a preferred range of melting tem-
perature, and probe distance from the 3′ end in the case of mRNA profiling. Other
considerations include avoiding repetitive sequence motifs, avoiding regions that
are likely to incur mRNA secondary structure, and avoiding cross hybridization
to sequences other than the target sequence. The latter calculation in particular
is very computationally demanding when done for extensive probe sets for large
genomes. These calculations are hampered by the absence of accurate models for
binding energy; published “nearest neighbor” interaction energies result mostly
from the dissociation of oligos of length ∼10 nucleotides (nt) in volume solution
(23), which can be very different from the behavior of surface-bound and longer
oligos owing to the electrostatic effects of the surface (24) and greater propen-
sity for secondary structure. These models also could benefit by factoring in the
rough expected abundance of all the molecular species in the tissue of interest. For
example, the cross-hybridization pattern in a liver sample will likely be different
compared to a brain sample, which has a different set of abundantly expressed
genes. Affymetrix probes are designed in pairs: One sequence is the exact com-
plement of the target sequence, and the other differs from the exact complement
by typically two mutations near the middle of the probe. Using the difference
signal between these two probes approximately cancels nonspecific binding and
background contributions. However, it does not cancel cross hybridization from
sequences nearly identical to the target because the mismatch probe will almost
certainly differ more from the closely related sequence than does the match probe.
Probe design for expression profiling increasingly will be splice-form specific as
a more complete understanding of splice forms becomes available (25).

Amplification and Labeling

The protocols for isolating and amplifying the desired form of nucleic acid have
many variations. In the case of mRNA profiling, amplification can proceed from
purified mRNA or from total RNA, although in prokaryotes mRNA purification is
problematic because the nucleic acid mostly lacks 3′ polyadenylation (26). Label-
ing molecules can be incorporated during synthesis of amplification products, or
modified nucleotides capable of accepting label can be incorporated during syn-
thesis and the labels coupled to these immediately afterward. Or, the labeling can

A
nn

u.
 R

ev
. B

io
ch

em
. 2

00
5.

74
:5

3-
82

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 H
A

R
V

A
R

D
 U

N
IV

E
R

SI
T

Y
 o

n 
01

/3
1/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.



10 May 2005 10:51 AR AR261-BI74-03.tex XMLPublishSM(2004/02/24) P1: JRX

62 STOUGHTON

take place after hybridization as in the Affymetrix protocol. Signal amplification
methods also have been employed to augment sample amplification (27–29).

Nucleic acid amplification can be accomplished through reverse transcription
of RNA followed by linear amplification with one or more rounds of in vitro tran-
scription (IVT) (12, 30–32), or via polymerase chain reaction (PCR) (33–36), or
a combination of these (12, 37). Amplification can be 3′-biased or full-length,
and the decision interacts strongly with the process of probe design. 3′-biased
amplification methods take advantage of priming from polyadenylation sequences
found in eukaryotic transcripts. Full-length amplification tends to employ random
priming of the target molecules, either because poly(A) sequences do not exist
as in the case of prokaryotic organisms, or out of a desire to amplify sequences
more representative of the entire target length. The final product to be hybridized
to the array can be either cDNA or cRNA. Out of these many variations a few
principles have emerged. Linear and modest amplification, as well as postsyn-
thetic incorporation of labels, generally are associated with more reproducible
data. cDNA:DNA hybridizations tend to suffer less from cross hybridization, even
though the actual binding energies tend to be lower than those of cRNA:DNA
duplexes. 3′-biased protocols have the advantage that the untranslated sequence
regions tend to be more diverse and so allow more sequence-unique and therefore
noncross-hybridizing probes to be designed.

Despite one’s best efforts, biases enter at all reaction steps in these workflows
and can be very sequence specific, so that the final brightness of a given probe is
only approximately relatable to the abundance of its corresponding target molecule.
Fortunately the most meaningful results usually are contained in the ratio of abun-
dances, referred to a reference biological sample, such as in disease versus normal
studies, rather than in the absolute levels. As long as the biases are reproducible,
ratios are fairly well preserved; they are not perfectly preserved due to the non-
linearity of the gains created at each stage in the process. Ratio measurements are
obtained by comparing two independently hybridized samples, or two samples are
independently labeled with different labels and competitively hybridized in the
same hybridization reaction. Competitive hybridization is the ultimate matched
control method because the variations in probe spot properties, arising from syn-
thesis and local hybridization conditions, usually cancel each other. This permits
accurate ratios to be obtained from spotted arrays even when the spots and hy-
bridization fluidics are somewhat irregular. This is an important reason why the rel-
atively low-budget spotting technologies have been so successful. Biases that arise
from differences in chemical properties between the two dyes are significant and se-
quence specific, but the biases can be mostly mitigated by repeating the experiment
with the reverse assignment of dye to sample and averaging the results (38, 39).

Hybridization

During hybridization, complementary sequences gradually find each other pref-
erentially over mismatched pairings. The fundamental parameters are time, strin-
gency, concentration, and complexity of the sample, as well as density of available
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binding sites. Secondary parameters include the distribution of fragment lengths,
steric effects of dye molecules (40), and surface chemistry (41). The optimization
of stringency involves choosing conditions in which, for most probes, perfect
match duplexes (or at least duplexes with the intended target) have a high occu-
pancy compared to mismatch duplexes. In general, any given target sequence will
pair and dissociate many times during the hybridization reaction, staying longer
at high-binding-energy well-matched duplexes than in poorly matched duplexes.
This annealing is therefore like musical chairs in which specificity increases over
time as the reaction approaches equilibrium (42). In fact, the progression with time
can be used to distinguish specific from nonspecific binding (43). In general, hy-
bridization times of several hours or more at relatively high stringency are required
to achieve the best specificity. A challenge for clinical and some biodefense appli-
cations will be to speed up this process substantially. The electric field–induced
migration of target fragments toward probes of the Nanogen system increases lo-
cal concentration and accelerates the accumulation of signal; it is less clear if it
accelerates the progression to a certain level of specificity. Likewise, agitation,
microfluidic circulation as in the Affymetrix system, surfactants, buffers (44), and
acoustic sonication (45) have potential to speed and improve hybridization.

Washing off the unbound sample after hybridization is a crucial step. Stringency
must be optimized here as well (46). Chemistry surprises still should be expected,
such as the recent discovery of the high sensitivity of some dyes in certain protocols
to the presence of atmospheric ozone (47), which seems to occur particularly during
the exposure of the drying array surface to the air.

Fluorescent Scanning of Hybridized Arrays

Fluorescent labeling and detection on nonporous arrays have replaced radioactive
labeling on membrane arrays in almost all labs because the sensitivity of the former
now rivals or exceeds that of 33P (37), and nonradioactive labeling is much easier
to handle. Scanning of a fluorescent hybridization signal can be done with CCD
imaging using filtered white light illumination, as in the ArrayWoRx from Applied
Precision, but now it is more commonly done with laser confocal scanners (48).
The laser confocal approach has fundamental geometric advantages that tend to
provide better signal-to-background ratios and less photobleaching of the labels.
Available options for fluorescent confocal scanners are changing even more rapidly
than for arrays. In addition to the Affymetrix-specific scanners supplied by them,
leading manufacturers include Agilent Technologies, Axon Instruments, Packard,
and Genomic Solutions.

Most devices have lasers and filter sets compatible with common fluorescent
label pairs such as Cy3 and Cy5. The leading laser confocal devices all have
sensitivities high enough that background fluorescence of the array substrate and
unwashed reagents, not signal faintness, generally limits performance. In other
words, these scanners are as good as they need to be given the current limitations
of other steps in the process. New options for brighter individual labeling units, such
as quantum dots (49) and plasmon resonance particles (50, 51), may finally allow
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single-molecule detection efficiency, further easing requirements on amplification
and on the input biological sample amount.

Scanners come with, or the manufacturer will recommend, image processing
software to reduce the raw images to spot intensities. This step is itself a challenging
and complex subject (52, 53). Because experiments often are designed to detect a
small number of changes among a large number of target genes, outlier errors in the
image must be carefully recognized and flagged. Any compromise in the accuracy
at this stage cannot be recovered downstream. The output should include pixel
intensity statistics that can be used as input to measurement uncertainty estimates.

Plasmon surface resonance detection of molecular binding is potentially a way
to scan microarrays without using any label (54), although this has not yet matured
to any commercial systems.

Performance Metrics for the Entire System

Ultimately it is the measurement performance of the system as a whole that is im-
portant. Various metrics have been proposed to assess this performance. One key
test is to spike in known amounts of a positive control into a typical complex sam-
ple. Because ratios of abundances between two samples are often most meaningful,
this should be done with different spike-in amounts in two samples, comparing
the observed ratios with the known input ratio. As a rule of thumb in expression
profiling, spike-in levels, corresponding to roughly one copy per cell, and changes
around this level, should be easily detected. It is an open question whether abun-
dances less than one copy per cell should be considered biologically meaningful.
However, most tissue samples are actually mixtures of cell types, so the effective
concentration of a low-abundance species functional in a rare cell type may be
much less than one copy per cell. Linearity of the intensity versus abundance rela-
tion is of interest but not as fundamentally tied to information content in the data.

Spike-in materials may depart subtly in their length, labeling, and chemical
properties from the actual target fragments, making them problematic as a per-
formance measure. One way around this is to use spike-in materials that are as
similar as possible to the targets of interest. Another strategy is to identify probes
that repeatedly show large ratios between two different samples, then look at the ob-
served versus linearly predicted ratios for these probes as these samples are mixed
in different fractions. The Food and Drug Administration (FDA) has adopted this
method, using rat tissues in a pilot study to develop assessment methods for sub-
missions of microarray-based drug development data (55). Another way involves
generating the Receiver Operating Characteristic (ROC) curve for difference de-
tection (56). This curve shows, for a given process flow and data analysis stream,
the trade between false positives and total positives as the detection threshold is
varied. It is fundamentally related to information content in the data. By analyzing
nominally identical independent samples, and also samples possessing true bio-
logical differences, false positives can be defined as differences detected between
nominally identical samples, whereas total positives are defined as all detected
differences.
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Experiment Design and Data Interpretation

Analysis of microarray data touches on most of the important issues in bioin-
formatics, laboratory information management, statistics, and machine learning,
and of course, it must be tightly coupled to the original experiment design and
intent. Commercial and free software packages have been developed to help with
some or all of the analysis process, and many useful methods discussions can be
found now in textbooks (57–61). The discussion here is intended to point out a
few underappreciated issues and give a broad sketch of the process.

Being attractive but expensive technology, microarrays were used initially often
with insufficient measurement replication, and issues of false positives under mul-
tiple hypothesis testing were somewhat slow to be confronted. It is now appreciated
that every probe has its own biases and error distribution due to a particular ex-
perimental workflow and that the errors have contributions that can look additive,
multiplicative (e.g., log-normal), or Poisson. Intensity transformations (62–64),
or a difference detection statistic based on explicit modeling of the presence of
additive and multiplicative errors (4), can remove the gross trends of error level
as a function of intensity, so that analysis of variance (ANOVA) methods become
very useful for analyzing factorial experiment designs (65), such as samples taken
across drug, dose, time, and tissue, including replicates. But with affordable num-
bers of replicates, the individual probe efficiencies and error levels remain poorly
determined. Individual probe efficiencies can be separated from their target species
abundance using any diverse set of conditions (66). And statistical “borrowing”
can be done from replicates of related experimental conditions to better deter-
mine the individual error levels. So far it has not been possible to achieve all of
the desired objectives in a computationally tractable framework, which would in-
volve ANOVA-like recovery of the effects of the multiple experiment parameters,
variance stabilization, and probe- and gene-specific error properties adapting to
increasing amounts of available data.

Particularly in expression profiling applications, much of the information is
contained in the behavior of low-abundance transcripts whose brightness is not
much above the background level. Negative control spots, having as close as pos-
sible the average sequence properties of the other probes but avoiding homology
to any expected sequences in the sample, are therefore very helpful in determining
and subtracting background offsets. Affymetrix match/mismatch probe pairs solve
this problem well for short oligos but expend half the probes on controls. Residual
errors in background subtraction result in biases in ratio measurements that are
more severe for the lower-intensity probes. This behavior can be partially corrected
by assuming that there is a significant subset of transcripts in the sample that are
not different between the two samples being ratioed (67), but this correction is
hard to integrate into the desired framework mentioned above.

Experiment design must consider the measurement accuracy of the microar-
ray platform being used and the magnitude of uncontrolled variation likely to be
inherent in the biological samples (39, 68, 69). For most animal-based experi-
ments, the best expression profiling techniques now produce measurement errors
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that are smaller than typical animal-to-animal variation, so there is a point of
rapidly diminishing return for running multiple array replicates on the same sam-
ple. The pairing of samples in two-color competitive hybridizations is problematic
because different pairings can only be created in silico after the experiments by
taking ratios of ratios, which increases errors (56). One of the colors can be de-
voted to a constant, universal (70) complex reference sample, so that any pair
of samples can be compared by taking a ratio of ratios; however, this uses half
of all hybridization throughput capacity for the control channel. In addition, two-
color competitive hybridizations usually require dye-swap hybridization pairs to be
accurate.

Having obtained abundance, abundance ratio estimates, and statistical signif-
icance values associated with these estimates for the target sequences in each
biological sample condition, biological interpretation can begin. The meaning of
each target sequence, resident in the world of gene annotations, is accessed via
its unique identifier. See Chapter 2 of Stekel (22) for a brief review of annotation
information resources.

Large sets of profiles usually are explored in an unsupervised manner by clus-
tering and other algorithms (71–73), regardless of the original experiment design.
This helps uncover process artifacts in the data as well as unexpected biology.
For example, circadian rhythms may confound the intended experimental variates
and be diagnosed initially by the presence of a cluster of genes in which this ef-
fect dominates. Once the artifacts are characterized, model-based methods can be
brought to bear to filter them out of the data. Probably the most common analysis
flow involves functionally interpreting genes whose expression covaries across
a set of biological conditions. Annotations of the genes and of the experimental
conditions can interpret the coregulated gene sets (74).

Many experiments are now oriented toward selecting mRNA or genetic biomark-
ers for predetermined end points. These present the problem of classifier generation
or supervised learning (75, 76). There are many algorithmic options for finding
predictive genes, with little firm understanding yet as to how to choose the best
algorithm for a particular biological application. There also are many pitfalls sur-
rounding what constitutes proper and sufficient validation. The following sections
include examples of more complex data sets and integrative analysis of microarray
data with other information.

EXPRESSION PROFILING

mRNA measurement applications have come to dominate microarray usage be-
cause of the rich information that can be derived about the functions of genes in
cells and tissues. The expression of a set of transcripts, an “expression profile,”
can be compared across different tissues from a given organism, across disease
states and genetic backgrounds, and across experimental conditions such as drug
treatments and gene disruptions. These data sets are particularly powerful when
collected simultaneously with other data types from the same biological samples.
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Body Maps

The baseline abundances of mRNAs in different tissues, sometimes called a “body
map” of expression, are of considerable interest because the list of tissues where
a gene is expressed provides a key clue as to the function of the gene and as to
where compounds targeting its protein are likely to do good or harm. If two genes
have similar patterns of expression across tissues, this is a clue to functional relat-
edness. Gene Logic (Gaithersburg, MD) sells access to such databases it created
via Affymetrix array profiling of tissue samples, and there are several publicly
available databases (77).

Creating these maps is of course more difficult when the tissues are less dramati-
cally different and the samples are smaller, such as in mapping regions of the mouse
brain (78). In contrast, the Allen Institute for Brain Science (http://www.brainatlas.
org/) is creating an expression map of the mouse brain by performing many in situ
hybridization slices through a brain for each gene. The former method should
reveal functional information for known structures more efficiently, whereas the
latter method should eventually reveal a new fine structure and its associated gene
expression.

Case Versus Control Studies: Disease States

The most common expression profiling experiment design compares two biolog-
ical conditions, such as disease state versus normal state. Genes upregulated, or
possibly downregulated, in the disease state are more likely than random chance
to be drug targets for that disease and offer a detailed molecular phenotype of the
disease. Meaningful results are critically dependent on realistic confidence assign-
ments for the measured differences in expression; to belabor the obvious, a 1% false
positive rate yields 500 false positives out of 50,000 reporters. Also, differential
expression of any given gene can arise from proximal or more distal reactive steps
in the disease process; it is just one clue to function that must be combined with
other evidence (79–81). Clues as to the mechanisms of disease come from look-
ing for functional categories of genes, such as those determined from databases of
functional annotations, that are overrepresented among the differentially expressed
genes (82). Simple case versus control studies have given way to more powerful
experiment designs to suggest targets and illuminate disease mechanisms. For ex-
ample, the aftermath of stroke in a rat model was followed over time in three brain
regions using contralateral samples from each animal as matched controls (83).
Gene groups regulated at different times postischemia meshed with existing stroke
models, and a new candidate target for therapeutic intervention was identified.

Parsing Pathways

At first, it would seem unlikely that highly parallel gene expression analysis would
be an efficient way to illuminate the detailed structure of signaling pathways.
However, the question of the existence of cross talk between mitogen-activated
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protein kinase (MAPK) signaling pathways was successfully addressed in this way
(84). Because it was not known where in the 6000-gene yeast transcriptome the
evidence for cross talk might appear, development of this experimental hypothesis
was not practicable without microarrays.

The existence of off-target effects of drugs turns out to be a similar kind of
question. By drug-treating a cell line lacking the gene for the drug target, one can
argue that any observed transcriptional changes are off-target effects that might be
associated with toxicity or unexpected mechanisms of the action. This was done
for the immunosuppression compound FK506 (85), and the off-target effects were
confirmed by extending the experiment to cell lines deleted both for the drug target
and for the suspected secondary target.

Functional Response Patterns

The power of expression profiling is most evident in experiments that explore a
systematically varied set of conditions. Data redundancy is provided by sampling
a smoothly varying process, and coregulation of genes across a set of biological
conditions reveals functional gene groups.

In a nonmicroarray study of this type from 1998, RT-PCR measurement sets
for 112 genes at various times during rat central nervous system development (86)
revealed features of the regulatory cascade. The advent of microarrays, of course,
enabled a much broader sampling of the genome. DeRisi et al. (87) followed es-
sentially all the genes in the yeast Saccharomyces cerevisiae growing in culture
through its diauxic shift. Genes with related known metabolic function showed sim-
ilar expression evolution over time. The transcriptional changes observed in other
genes helped flesh out knowledge of the metabolic pathways involved. Progression
of expression during development was followed during early metamorphosis in
Drosophila (88), and genes were grouped according to their pattern of expression
over the different phases of development. Caenorhabditis elegans was profiled
over a set of developmental phases, growth conditions, and genetic mutations; the
diversity of these conditions yielded strong groupings of coregulated genes (89).

As in the study mentioned above (83), increasing diversity of the conditions set,
up to a point, yields stronger and more informative groupings of genes by coreg-
ulation. When this point is reached is a question that is answered by considering
biological complexity and using algorithms to find patterns. In any event, these
groupings still are subject to the caveat that similarity of response results in a “guilt
by association” inference (90) and not proof of functional relatedness. Marcotte
et al. (91) were able to estimate the relative power of expression coregulation data,
physical association, and sequence-based analyses to infer functions of thousands
of yeast genes; comparing these predictions to accepted functional annotations in-
dicated fairly limited accuracy of the coregulation based inferences, although this
depends on the set of conditions over which the expression profiles are obtained.

Spellman et al. (92) followed the yeast S. cerevisiae through two cell cycles, first
phasing up the cells in the culture with multiple-cycle arrest and release methods.
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On the basis of cyclic expression responses, hundreds of new genes were added to
those already known to be regulated in the cell cycle, and functional relationships
between different phases of the cycle were suggested. Despite the visually clear and
pleasing expression patterns that resulted, the detailed conclusions of this and sub-
sequent synchronization studies with microarrays have been called into question
over statistical issues and whether most cells are in fact synchronized (93). This
application and its controversy illustrate the power of the technology and the chal-
lenges in analyzing these large data sets with uncertain error behavior and biology.

Hughes et al. (4) profiled a large set of different single-gene disruption mu-
tants in yeast, comparing their transcriptional state to the wild-type strain. The
resulting patterns (Figure 4) provided a visualization of major pathway groupings
and provided functional inferences for previously unannotated genes. Figure 4,
in which rows and columns of the expression ratio data were reordered according
to agglomerative hierarchical similarity clustering, illustrates the important dis-
tinction between two modes of functional inference. Proximity of two genes in the
horizontal dimension is the guilt by association mode of inference. These genes
respond similarly to the disruptions of other genes. But this kind of similarity often

Figure 4 Expression responses to single-gene deletions in yeast. Each row represents
the up- (red) or downregulation (green) of expression in response to a single-gene
disruption in yeast (4). Only 300 genes (columns) are shown. These were the most
responsive among the ∼6000 yeast genes measured in each two-color hybridization
experiment. Columns, and independently the rows, have been rearranged via agglom-
erative hierarchical clustering to place rows with similar response patterns near each
other, and columns with similar response patterns near each other. Each red or green
island then represents a coordinated transcriptional response that is similar for each of
a set of gene disruptions.

A
nn

u.
 R

ev
. B

io
ch

em
. 2

00
5.

74
:5

3-
82

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 H
A

R
V

A
R

D
 U

N
IV

E
R

SI
T

Y
 o

n 
01

/3
1/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.



10 May 2005 10:51 AR AR261-BI74-03.tex XMLPublishSM(2004/02/24) P1: JRX

70 STOUGHTON

is the result of a fairly uninteresting downstream convergence of pathways, such
as a global stress signature. Proximity on the vertical axis means two genes, when
disrupted, produce similar cell responses at the molecular level. This similarity of
molecular phenotype is a stronger indication of functional similarity, in analogy
to conventional genetic studies, as was borne out by the biochemical confirmation
rate achieved in this work for functional predictions based on the vertical axis
proximity compared to those based on horizontal axis proximity (4).

Just as the molecular phenotypes associated with disruption of genes of known
function serve as landmarks in the above example, toxicity landmarks in rat liver
were produced by profiling the response to compounds of known toxicity (94,
95). The expression profiles produced by compounds under study then can be
interpreted for the mechanism and likelihood of toxicity. Biological interpretation
of the responding genes also gives clues to the mechanisms of toxicity. Similarly,
efficacy landmarks can be provided by profiling drugs with known mechanisms
of action. Expression responses to psychoactive compounds in primary human
neurons in vitro were used to develop classifiers for antidepressant, antipsychotic,
and opioid drug action (96). The products of such projects can be thought of either
as biomarkers for particular classification decisions or as a general resource for
interpreting the bioactivity of new compounds.

One of the most common experiment types in the drug discovery and diagnostics
arena is the deliberate search for biomarkers of a particular human phenotypic
end point. Cancer outcome prognosis is a very popular category of these because,
conceivably, profitable microarray-based clinical treatment decisions are not many
years off. Alizadeh et al. (97) found expression patterns indicative of survival
in B-cell lymphoma patients and characteristics of two subtypes of large diffuse
lymphoma B cells. In this study, the microarray probes were chosen to target genes
expressed in lymphoid cells and to be relevant to immune response. A subset of the
predictive markers was confirmed in follow-up validation studies with PCR. Van t’
Veer et al. (98) were able to find an arithmetic function of the expression levels of
70 transcripts that predicted metastasis of breast tumors out of ∼25,000 profiled.
This predictor was derived and cross-validated using a set of 98 patients, and then
it was validated in a larger follow-up study of almost 300 patients (99). A recent
meta-analysis of 84 microarray-based cancer outcome studies found that very few
of them accomplished thorough validation and that, not surprisingly, larger cohorts
and larger probe sets increased the chances of finding good biomarkers (100).

There is a close relationship in these studies between developing predictors
and recognizing subphenotypes of disease. In general, the detailed molecular phe-
notype provided by expression profiling allows discrimination between multiple
states that may at one moment have the same gross phenotype but for which the
subsequent progression of events differs.

Integrative High-Throughput Studies

The exciting possibility of reconstructing biological pathways from large microar-
ray expression data sets, hinted at in Figure 4, has proved elusive, although some
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progress has been made by starting with the assumption of sparse network con-
nectivity (101). When other data types are profiled at the same time, greater power
is achieved.

By combining regulatory sequence motif findings with expression coregulation
response clustering, better confidence is achieved in identifying regulatory ele-
ments and the sets of genes that should respond to them (102–105). The conclusions
from these methods are checked further against direct experimental determinations
(106) of transcription factor binding to the genome (107).

Building on a preliminary study, Ideker and coworkers (108, 109) obtained
proteomic and mRNA response profiles for yeast cultures, corresponding to a set
of galactose utilization gene mutations and growth conditions, and combined these
data with physical interaction data to obtain refinements to the galactose utilization
pathways. Knowing the levels of both the mRNAs and their associated proteins,
including transcription factors, allows specific tests of alternative network models
that are nearly impossible with mRNA data alone.

Schadt et al. (110) obtained from the same 111 mice, by microsatellite genotyp-
ing at 13-centimorgan (cM) spacing, 23,000-gene expression profiles from their
livers and detailed phenotypic data. The data were combined in novel ways to
find genetic loci controlling the mRNA levels and the phenotypic traits associated
with common multigenic diseases like obesity. These methods promise to be an
order of magnitude more efficient than conventional linkage analysis for finding
causative alleles. In Figure 5, expression data for the most differentially regulated
genes are displayed, organized by unsupervised clustering. The phenotypic codes
on the left of the heatmap, indicating fat pad mass, show that even though the
clustering was unsupervised, the results are dominated by changes associated with
this phenotype. The structure evident in the horizontal direction suggests gene
subsets are associated with different pathways involved in the phenotype, and the
corresponding vertical structure suggests subsets of cross-bred animals that were
fat for those reasons. In fact, by performing traditional quantitative trait loci anal-
ysis using subsets of animals identified in this way, linkage estimates, or log of the
odds score peaks across the genome, were sharpened and intensified, and causative
genes began to be associated with different subphenotypes of obesity.

There is an important distinction between integrating data types at the level
of conclusions and integrating them at a deeper level in the context of a detailed
biological model. Franke et al. (111) recently presented a software tool that brings
together linkage, association, expression data, and functional annotations to sup-
port research objectives similar to those of Schadt et al. (110). However, this
integration was at the level of inferences already drawn from the separate data
sets. Schadt et al. (110) obtained the multiple data types from the same animals
and used the individual mRNAs as intermediate phenotypes, implicitly placing
them in a model that relates them to the causative alleles and to the downstream
physiologic phenotypes. In fact, their work is being extended to reconstruct causal
networks of genes. It is tempting to use the term “coherent” to refer to this deeper
kind of data integration, in analogy to its usage in electrical engineering and signal
processing, that leads to greater signal-to-noise ratios in detection.
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Figure 5 Coherent analysis of expression profiles, genotype scans, and phenotypic data
from cross-bred mice (110). Animals with extreme phenotypic values, in this case fat pad
mass, were selected for analysis (a). Unsupervised clustering of liver expression profiles
allowed subgroups to be defined (b). Genetic linkages of phenotype (c) and of individ-
ual mRNA levels to genome locations were sharpened and strengthened by using these
expression-defined phenotypic subgroups.

A
nn

u.
 R

ev
. B

io
ch

em
. 2

00
5.

74
:5

3-
82

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 H
A

R
V

A
R

D
 U

N
IV

E
R

SI
T

Y
 o

n 
01

/3
1/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.



10 May 2005 10:51 AR AR261-BI74-03.tex XMLPublishSM(2004/02/24) P1: JRX

DNA MICROARRAYS IN BIOLOGY 73

Weinstein et al. (112) combined 1376-gene expression profiles of the 60 Na-
tional Cancer Institute cancer cell lines with growth inhibition data for these lines
under 118 drug treatments to find clues as to molecular targets of the compounds.
Correlation of growth inhibition with expression level over the 60 cell lines for
each drug-gene pair yielded a 1376 × 118 table of correlation values. This table
then was manipulated via clustering of rows and columns, as in Figure 4, to obtain
groups of related targets and related compounds.

Splicing and Exon Discovery

Shoemaker et al. (113) designed a set of genomic tiling arrays for human chromo-
somes 21 and 22 to identify novel exons in an unbiased and comprehensive fashion.
60-mer probes were placed 30 nt steps across the repeat masked genomic sequence
and the set of microarrays were hybridized with RNA from six different tissues.
The presence of expression signals found across multiple human tissues was used
to identify novel exons and to revise annotated gene structures. Figure 6 shows an
example of the hybridization signal from a gene region of chromosome 21.

Multiple probes spanning several exons of a gene, hybridized to samples from
multiple tissues, provide enough information to infer alternative splice forms.
This was first demonstrated in rat tissues (114). Johnson and coworkers (25, 115)
designed probes for ∼12,000 human genes that were hybridized with samples from
multiple human tissues. The resulting hybridization data from the junction probes
were used to identify thousands of novel splice variants along with an expression
atlas showing in which tissues they were expressed.

ANALYSIS OF GENOMIC DNA

When the gene copy number is changed, there are corresponding changes in mRNA
levels. Microarrays have, in this way, detected aneuploidies in yeast deletion strains
(116) and have seen a mixture of regulation and copy number changes in prostate
cancer cells (117). Copy number changes, of course, can be seen directly in the
concentration of genomic DNA fragments from particular genome regions, and
microarrays have been used to scan for cancer-related changes (118). The temporal
progression of replication along the chromosome has even been tracked in this way
(119).

Ren et al. (106) used microarrays to report which regulatory sites bound a
certain transcription factor in yeast. A given transcription factor was allowed to
bind to fragmented genomic DNA, which was then enriched for the bound regions
using chromatin immunoprecipitation, amplified and labeled, and hybridized to
an array of spots containing intergenic DNA. This approach was recently used to
map the binding sites for three human transcription factors on chromosomes 21
and 22 (120). A similar technique was employed to map histone deacetylation in
the yeast genome (121).
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Figure 6 Tiling probes used to refine gene structures. Overlapping 60-mer oligo probes were
designed to cover genomic regions where exons were computationally predicted (113), revised
and reprinted with permission (http://www.nature.com/). In this display of a gene region on
chromosome 21, probe intensity was truncated below the expected noise background level.
For some exons, the computational prediction is confirmed. For others, it is revised by the
data.

Detailed Characterization of Microbial Pathogens

The highly parallel interrogation of pathogen genomes, enabled by microarrays,
promises to radically change the diagnosis of infectious disease, monitor emerg-
ing infections, and monitor the safety of food, water, and air. Probes constructed
for genes in a baseline strain can be used to characterize and compare with the
genomes of test strains via competitive hybridization. This approach was used
to identify differences between Mycobacterium tuberculosis and the associated
Bacillus Calmette-Guerin vaccine strain (122), to identify horizontal gene trans-
fers causing methicillin resistance in Staphylococcus aureus (123), and to show
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near genetic identity between strains responsible for two separate epidemics of
rheumatic fever caused by Group A Streptococcus (124).

Tiling probes across the VP1 coding region of vaccine-derived poliovirus
(VDPV) were used to detect emerging point mutations associated with vaccine
virulence, whereas VDPV strain-specific probes were used to detect recombi-
nation events (125). Using PCR followed by microarray hybridization, probes
targeted at specific genes are used to detect the presence of virulence factors,
antigenic determinants (126) and drug resistance determinants (127) as well as
to resolve closely related species of bacteria (128, 129). The advantages of mi-
croarray readout over specific PCR detection, such as one or a few TaqMan probe
sets, are the number and diversity of identification sites that can be detected per
amplicon and the degree of multiplexing in the PCR that can then be demulti-
plexed by the arrays. Several different highly multiplexed amplification strategies
as front ends to microarray readout recently have been compared (130), includ-
ing random primed PCR, isothermal full-genome amplification, and multiplexed
specific PCR. Random primed amplification followed by microarray detection
is particularly useful for detecting and identifying rapidly mutating viruses be-
cause by designing the microarray probes for conserved regions of genes, unex-
pected strain variants still will be detected, and a large number of virus species
can be detected at once. Using conserved and strain-specific probes, this approach
was demonstrated to detect and distinguish most respiratory viruses (131, 132),
and the approach was used to help identify the recently emerged Severe Acute
Respiratory Syndrome virus and its phylogenetic relationship to other viruses
(132, 133).

Host-microbe interactions also could be studied in detail using a combination
of genomic analysis of the pathogen and expression profiling of host immune cells
(134, 135).

Genotyping

Rapid acquisition of genetic information was one of the original motivations for
the Affymetrix microarray technology (10). Resequencing for point mutations us-
ing microarrays was demonstrated in 1996 (136) and has become an established
methodology (137). The baseline method involves short probes complementary
to every N-mer of the baseline target sequence and additional probes that vary
the nucleotide at the putative mutation position. Each of these also can be paired
with a “mismatch” probe to control for nonspecific hybridization. Chips have
been designed for mutation detection in genes of particular interest to human
health, including the cystic fibrosis gene CFTR (138), the breast cancer suscepti-
bility gene BRCA1, P53 (139), and mitochondrial DNA (136, 137, 140). Studies
of the performance of these devices, in the context of P53 (141) and mitochon-
drial DNA (140, 142), have shown the promise of these methods and also the
difficulties associated with false detections when the underlying mutation rates
are low.
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When a specific list of known polymorphisms scattered throughout the genome
need to be targeted, probe sets can be designed just for them, or microarrays can be
used as a demultiplexing tool when the molecular recognition of the polymorphism
takes place first in a highly multiplexed volume reaction (5, 143).

EMERGING TRENDS

Microarray technologies based on light-directed synthesis have room to follow
a Moore’s Law miniaturization for several more years before running up against
fundamental physical limits imposed by the diffraction of light, which tend to
place a lower limit of ∼1 micron on feature size. This miniaturization will al-
low both greater probe budgets and smaller hybridization volumes. The greater
probe counts can be used to increase the redundancy of measurements and to
independently report alternative splice forms for every gene in a single hybridiza-
tion. Resequencing applications can tackle larger genome regions. The smaller
hybridization volumes translate into less required biological input sample and/or
less required amplification. With great care, laser-microdissected samples, com-
prising only a few cells, can be profiled currently in research settings (144, 145),
and this will become commonplace. Microarray hybridizations increasingly will
be run in a higher-throughput manner with sample prep done in 96-well
plates (146).

Reagent use and cost will decrease with fluid volume. Eventually the costs will
be low enough to make them tolerable in a routine medical point-of-care context;
costs already have decreased to the point where some clinical diagnostic contexts
with high reimbursable value per test, such as tests supporting choice of cancer
treatment, could afford microarray measurement.

Cost may not be the main obstacle for long. In 1996, Oncormed (Gaithersburg,
MD) began using an Affymetrix P53 chip in clinical trials to stratify patients with
head and neck cancer. However, as of this review, DNA chips still have not made
it into clinical practice. The FDA, in July 2003, sent a strong message to Roche
Molecular Diagnostics about their Affymetrix microarray-based AmpliChipTM de-
signed to report genotypes relevant to individual human drug metabolism differ-
ences; the effect of the message was that before marketing begins the AmpliChipTM

would have to pass the stringent examination expected of any device “intended
for a use which is of substantial importance in preventing impairment of human
health” (147). Although not unexpected, this is a reminder that years of validation
testing await any new set of diagnostic markers, even those generated with impres-
sive technology. However, the FDA is actively involved in promoting a cooperative
framework to evolve guidelines for use in drug discovery, clinical trials, and public
health (148).

In the near term, mRNA biomarkers identified via microarray profiling may
enter the clinic instead via individual RT-PCR tests or in the form of enzyme-linked
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immunosorbent assay tests for associated circulating proteins. Because serum is
so accessible and information rich, proteomic profiling for biomarkers is a strong
competitor (149).

As proteomic and metabolomic profiling catch up to mRNA profiling, and the
informatics infrastructure is developed to interpret these three data types coherently
at the level of biological pathways (150), the acquisition of detailed biological
knowledge will accelerate. It will be most powerful to make these measurements
simultaneously on the same tissue samples, or at least the same organism, to achieve
as much coherence as possible in the measurements.

Recent advances in achieving specific gene disruptions in mammalian cells via
the RNA interference mechanism should allow large sets of known specific per-
turbations to be executed (151) and the collection of high-dimensional response
data. The increasing speed and decreasing price at which these measurements
can be accomplished and analyzed suggest a different way of doing biological
research. For example, a drug company wishing to develop new therapeutics
for a disease could stake out an area of biology (defined by the relevant sets
of gene disruptions, existing compounds, disease states, and tissues) and profile
the responses to essentially all possible manipulations, achieving for their invest-
ment a new, more complete level of understanding of the relevant pathways, lists
of potential drug targets, and target N-tuples for combination therapies, ranked
for probable efficacy and toxicity. One caveat here is that animal experiment
costs do not follow Moore’s Law, but small-volume cell cultures conceivably
could.

Sharing and standardization of expression data are potentially very powerful
directions for this work. Of the many publicly accessible databases for gene expres-
sion (152), Gene Expression Omnibus, at the National Center for Biotechnology
Information (153), and its European counterpart Array Express, at the European
Bioinformatics Institute (154), are intended to become large-scale repositories
and have adopted standard data structures and guidelines for minimum supporting
information, expressed in Extensible Markup Language. However, typically the
in vivo experiment histories are not yet documented in enough detail for truly
coherent analysis across data sets, even when the probe sequences can be related
to common target sequences. Given the magnitude of the combined investments
being made in these measurements, this is a frustrating limitation, but one which
involves the subtle variations between nominally similar biological systems as well
as bioinformatics issues.
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