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The exploration of quantitative variation in human populations has become one of the major priorities for medical
genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable
assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated
Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the
International HapMap project. The genes are located in regions of the human genome with elevated functional
annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and
Chromosome 20q12–13.2. We apply three different methods of multiple test correction, including Bonferroni, false
discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant
association of single nucleotide polymorphisms (SNPs) with expression variation in lymphoblastoid cell lines after
correcting for multiple tests. Based on our analyses, the signal proximal (cis-) to the genes of interest is more abundant
and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory
polymorphism is widespread in the human genome and show that the 5-kb (phase I) HapMap has sufficient density to
enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the
non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell
lines themselves may serve as a useful resource for quantitative measurements at the cellular level.
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Introduction

Mapping genetic factors that underlie quantitative traits in
humans has been a challenging task in the absence of large
samples with accurate phenotypic measures and dense
genotypic data. In particular, one of the gaps in our
knowledge of human biology is the structure of genetic
variation affecting gene regulation and how it contributes to
phenotypic variation and disease [1]. Recent studies in model
organisms including yeast [2–5], mouse [6–8], maize [8], and
rat [9], have attempted to address this issue by testing for
linkage and/or associations of gene expression variation
among individuals with nucleotide variation. As a result,
extensive functional genetic variation has been discovered,
suggesting that the overall contribution of regulatory
variation to phenotypic variation has been underestimated.
In humans, three studies have followed a two-stage approach:
first performing linkage analysis to identify regions in which
gene expression variation segregates in pedigrees, and then
linkage disequilibrium (LD) mapping those regions in a larger
sample of unrelated individuals with additional markers [10–
12]. Linkage analysis may miss weaker signals in the first stage,
as it relies on sufficient differences in phenotypic means
among recombinant and non-recombinant genotypes [13].
On the other hand, allele-specific expression experiments can
identify signals nearby the gene and in LD with the coding
single nucleotide polymorphism (SNP) that is used for the
measurement, but cannot provide an unbiased view of
regulatory variation in the human genome [14,15]. Associa-
tion studies have generally more power to detect such signals

[16], and the availability of high throughput methods for
genotyping and gene expression profiling make genome-wide
scans an appealing alternative. But genome-wide studies pose
their own challenge in the form of statistical inference in the
face of so many simultaneous statistical tests. Obtaining
sufficient power using a test with a given rate of false positives
in this setting remains a serious challenge [17].
In this study we employed the densely genotyped (.1

million SNPs) HapMap panel of 60 unrelated US residents of
Northern and Western European descent (labeled CEU; see
[18,19]) to perform a genome-wide association study of gene
expression in 630 genes (excluding control genes). We show
that even with this limited sample size, we are able to detect
strong and highly significant SNP-to-expression associations,
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most of which are cis (proximal 1-Mb regions) to the gene of
interest. This analysis provides the first unbiased and
genome-wide view of regulatory associations in samples of
unrelated individuals in humans.

Results

Sample and Experimental Design
We selected a set of 630 protein coding genes (see Figure S1

for chromosomal distribution) consisting at the time (January
2004) of all Refseq genes in the ENCODE regions [20] (321
genes, excluding the HSA21 ENCODE regions), all Refseq
genes on human Chromosome 21 (191 genes), and all Refseq
and manually curated genes from a 10-Mb region at 20q12–
13.2 (118 genes), and surveyed their transcript levels in a
sample of lymphoblastoid cell lines generated from 60
unrelated CEU individuals. Transcript levels were measured
with the Illumina BeadArray technology using two or more
unique oligonucleotide probes per gene (1,433 probes
including controls; see Materials and Methods) [21]. We
performed a minimum of six replicate hybridizations for each
of the 60 samples and obtained expression values for all the
probes and samples. We normalized the raw intensity values
with a quantile normalization method and averaged the
replicate values (see Materials and Methods) per probe per
sample to obtain a single expression level per individual per
probe. We found excellent correlation between measure-
ments of replicates within and between arrays (r2¼0.96–0.99).

Initial Association Analysis
To perform association tests between gene expression

variation and SNP variation, we selected 374 of the 630 tested
genes that had probe hybridization signals significantly above
the background and were among the most variable (we
excluded probes with phenotypic outliers; see Materials and
Methods), corresponding to 688 unique probes, and the
public release of 753,712 SNPs with minor allele frequency
above 5% made by the HapMap project (HapMap version

16b; [19]). The actual determinants of gene expression levels
are likely to be associated with many interacting factors
across the genome, but in light of the small sample size, we
consider here only the simplest models testing for single-SNP
effects. We employed a main effects, linear regression model
separately for each probe, where the additive effect of a SNP
genotype is tested by coding the genotypes of each SNP as 0,
1, and 2 (corresponding to the counts of the minor allele in
each genotype) and performing a linear regression of the new
variable, ‘‘allele counts’’, with the normalized gene expression
values; this test has one degree of freedom. Note that we
treated each probe separately to account for potential
differences between the transcript levels inferred by the
one or the other due to SNPs or other sequence dependent
effects, though in most cases the two probes of each gene
were highly correlated (see Figure S2) and produced almost
identical results. This makes it unlikely that the associations
described below are artifacts of segregation of SNPs within
the 50-mer probe sequence but we describe a more detailed
analysis below to account for such effects. Because the model
considers the effects of each SNP singly, it cannot test the role
of potential SNP–SNP interaction effects.

Methods for Multiple-Test Correction
One of the main problems of performing genome-wide

analysis with such a large number of phenotypes and SNPs is
correcting for multiple testing. Despite the fact that there
have been a number of approaches to handle this problem, it
is not yet clear which is the optimal way to perform such
correction [22]. Thus we applied three methodologies
routinely employed for multiple test correction when using
a random set of markers from the genome, namely the
Bonferroni correction for multiple tests, generating a null
distribution of p-values by permuting the phenotypes relative
to the genotypes [23], and the false discovery rate (FDR) [24].
In all cases of multiple correction we assigned a significance
threshold of p ¼ 0.05 after the correction.
We considered both the genome-wide distribution of p-

values as well as a subset of SNPs within 1 Mb from the genes
tested. The rationale for the 1-Mb subset is that most of the cis
regulatory regions of a gene are located within a small
distance from the gene (though known enhancers can be as
far as 1 Mb away from the gene; [25]) and therefore the
density of relevant sequences around each gene is high. This
can be viewed as a ‘‘candidate region’’ approach similar to the
candidate gene approach used in disease studies. By restrict-
ing our analysis to these candidate regions we are more likely
to detect relevant associations. This was evident when we
contrasted the distribution of p-values between cis and trans
(Figure 1). For the purposes of our analysis we have defined cis
to be 1 Mb from the midpoint of the genomic region of the
corresponding gene.
Bonferroni correction was applied to the genome-wide

analysis as well as to a subset of the associations where
SNP�gene distance was less than 1 Mb. The p-values
generated from the individual SNP�gene tests were evaluated
according to an adjusted significance threshold generated by
dividing the 0.05 threshold by the total number of tests
(number of genes multiplied by number of SNPs) performed
in each case (whole genome or cis). The purpose of applying
the Bonferroni correction to the 1-Mb subset of SNPs was to
assess significance when only the cis- signal is considered. The
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Synopsis

With the finished reference sequence of the human genome now
available, focus has shifted towards trying to identify all of the
functional elements within the sequence. Although quite a lot of
progress has been made towards identifying some classes of
genomic elements, in particular protein-coding sequences, the
characterization of regulatory elements remains a challenge. The
authors describe the genetic mapping of regions of the genome
that have functional effects on quantitative levels of gene
expression. Gene expression of 630 genes was measured in cell
lines derived from 60 unrelated human individuals, the same Utah
residents of Northern and Western European ancestry that have
been genetically well-characterized by The International HapMap
Project. This paper reports significant variation among individuals
with respect to levels of gene expression, and demonstrates that
this quantitative trait has a genetic basis. For some genes, the
genetic signal was localized to specific locations in the human
genome sequence; in most cases the genomic region associated
with expression variation was physically close to the gene whose
expression it regulated. The authors demonstrate the feasibility of
performing whole-genome association scans to map quantitative
traits, and highlight statistical issues that are increasingly important
for whole-genome disease mapping studies.



whole genome Bonferroni correction was based on all
753,712 SNPs. If we had performed a whole genome analysis
using a subset of ‘‘tag’’ SNPs, for example using 500,000 SNPs,
the Bonferroni significance threshold would have differed
little (p-value equal to 2.67 3 10�10 instead of 1.77 3 10�10;
corresponding to�log10p equal to 9.57 and 9.75, respectively).

In order to obtain significance values using an empirical
null distribution of p-values from the observed data, we
performed 12,500 permutations, wherein each permutation
shuffled the expression values relative to the genotypes and
for each permutation we retained the minimum p-value for
each gene separately [26]. Empirical p-values were obtained
by comparing the observed (non-permuted) p-values for each
gene to the distribution of permuted p-values for the same
gene. We subsequently corrected for the number of genes
tested by adjusting the significance threshold by dividing by
the number of genes tested.

The permutation analysis was first performed using
genotypes for all 753,712 SNPs, and then again using
genotypes for only those SNPs within 1 Mb of the gene of
interest to test the significance of cis effects. The permuta-
tions were performed separately for each of the two sets of
SNPs according to the description above, and significance was
assessed for each using the same implementation of multiple
test correction as described.

For the third test, we employed an FDR analysis [24],
considering only those p-values from associations of all tests
with SNP�gene distance less than 1 Mb. The distribution of all
of these p-values together (i.e., p-values from all genes and their
cis SNPs) was used to calculate the FDR and to assess significance
of each individual p-value in the distribution. A whole-genome
FDR calculation was not undertaken as the number of genome-
wide p-values made it computationally prohibitive to run the
analysis. Signals were considered significant if a p-value had a
corresponding q-value of less than 0.05.

Assigning Significance to Associations
We detected highly significant (�log10p up to 13.6) and

multiple associations between gene expression level and SNPs
in close proximity (less than 400 kb) to the corresponding
gene. The signal from the additive model decayed rapidly
with distance from the gene (Figure 2A and 2B). In particular,
based on the Bonferroni genome-wide threshold (Bonf-gw) we
detected a total of 99 SNPs (183 SNP-probe associations) that
significantly explained transcript levels of six genes, half of
which (three out of six) are in cis and half (three out of six) are
in trans. These 99 SNPs cluster into seven genomic regions.
When we applied the Bonferroni correction only for
SNP�gene associations with distances less than 1 Mb (Bonf-
cis) the number increased to 171 SNPs (310 SNP-probe
associations) for ten genes, with these SNPs clustering into
ten genomic regions.
Permutation-based assignment of significance was also

applied to our analysis. When we performed genome-wide
correction (Perm-gw) only three genes had significant associ-
ations, and these were in cis. The same three cis associations
were identified by the genome-wide Bonferroni correction.
Interestingly, no trans associations were significant with the
permutation-based analysis; notably absent were the three
trans associations identified by the genome-wide Bonferroni
correction. This suggests that although Bonferroni is generally
a conservative correction method, it might still identify
spurious associations if the assumptions of the original
parametric model are violated (see below). Permutation-based
correction of p-values for SNP�gene distances of less than 1
Mb (Perm-cis) detected ten genes with significant associations,
which were the same ten genes identified by the 1-Mb Bonf-cis
correction. To further explore the signal cis to the genes
tested, and uncover associations that might be biologically
relevant but do not cross the significance threshold due to our
small sample size, we considered all the genes that were
individually significant at the 0.05 significance threshold
based on the permutation test (Perm-cis-enrich). A total of 63
genes were determined to be individually significant at this
level, while we expect only 19 by chance. This pool of 63 genes
is therefore enriched by 44 genes that appear to have
significant signals within 1 Mb of the gene.
Finally, we assigned significance based on a FDR of q¼0.05.

As mentioned above, it was computationally prohibitive to
perform the FDR for all p-values of the genome-wide analysis,
so we only used p-values where the SNP–gene distance was
less than 1 Mb (FDR-cis) to interrogate the cis signal. We
identified 40 genes that had at least one SNP with q, 0.05. Of
these, 38 were overlapping with the 63 genes that were
individually called significant in the permutation analysis
(Perm-cis-enrich). The dependence of SNPs due to linkage
disequilibrium may be considered a problem, but as
described in Remark D in [24], this dependence may actually
lead to conservative estimates of significant genes. However,
to account for the effects of dependence of SNPs in
associated regions, and be even more conservative, we
removed from the FDR analysis all p-values of SNP–gene
tests within 100 kb from the lowest p-value for each of the 40
genes above (FDR-cis-trim). When new FDR thresholds were
assigned, only 20 genes remained significant, although the
remaining 20 were very close to the new threshold. All 20
genes were in the pool of 63 genes identified by the Perm-cis-

Figure 1. QQ Plot of cis versus trans HSA20�log10p-Values
The figure shows the contrast of �log10p-values deriving from
associations of SNPs and genes within the 10-Mb region of HSA20 with
�log10p-values deriving from associations between genes on the 10-Mb
region HSA20 with SNPs in one of ten ENCODE regions. Note that the
distribution falls off the diagonal around�log10p¼ 4, which we consider
the borderline for the high enrichment of cis significant effects. A similar
pattern is observed with any set of trans�log10p-values on HSA20 or any
other cis vs. trans contrast in any region we tested.
DOI: 10.1371/journal.pgen.0010078.g001
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enrich method. The reason that only 20 genes remained
significant is because although we removed the dependence
in regions that had a strong signal, we did not remove the
dependence in regions with null signal and these regions are
more common. So although only 20 genes were left after the
FDR-cis-trim analysis, the 40 genes detected with the original
FDR-cis analysis should be considered as a set of genes with
significant cis signal.

Overlap between Multiple-Test Correction Methods
Table 1 summarizes the numbers of genes identified by

each method and the overlaps of associated genes. The
biggest discordance was that between Bonf-gw and Perm-gw.
Bonf-gw identified three trans associations that were not
considered significant by Perm-gw. This is due to the presence
at each of these three expression phenotypes of one or two
individuals with phenotypic outliers (very slightly exceeding
the meanþ three standard deviations) that caused extreme p-
values with a few SNPs. The presence of these phenotypic
outliers violates the normality assumptions of the linear
regression model, thus the p-values obtained are not valid.
Such problems are not accounted for by the Bonferroni
correction if phenotypic distributions are not filtered in

advance but can be accounted for by permutation-based
thresholds. All analyses in cis showed that ten associated genes
were considered significant across all methods that focused
on the cis signal only (Perm-cis, Perm-cis-enrich, FDR-cis, FDR-cis-
trim). Two of these ten genes, CPNE1 and CSTB, were also
shown to have significant cis signals in a previous study
[10,12], corroborating the validity of the observed signals.
Interestingly, the FDR-cis and Perm-cis-enrich analyses showed
that it is likely that more than ten genes have a significant cis
signal. The overlap of these methods was almost 100% (38 out
of 40 genes identified in the FDR-cis analysis were included in
the 63 genes significant by Perm-cis-enrich). It is worth noting
that the FDR-cis analysis with q¼0.05 predicts that 95% of the
40 genes (i.e., 38 genes) will be real signals, which is exactly the
number that overlaps with Perm-cis-enrich. Overall, we ob-
served a very good concordance between the different
statistical methods that were used to assign significance based
on multiple test correction.

Power and the Magnitude of Effects
The small sample size and the large number of SNPs and

phenotypes bring challenges to the interpretation of the
significant effects we detect. Our rationale to focus on cis

Figure 2. Cis- Signals of SNP�Gene Associations in the Human Genome

(A) The relationship between statistical significance and distance from gene. Each data point represents the maximum�log10p for a single gene and
SNPs located cis- to its coding locus. The �log10p-values from the additive model are plotted as a function of distance between the center of the
genomic span of the gene and cis- located SNPs (cis-, 4 Mb). Only those gene-SNP associations that have�log10p. 4 are shown. SNPs are from the 5-
kb HapMap. This plot includes data for 101 genes (129 probes). (B) Cis- SNPs with�log10p � 4 from the 688 probes analyzed are plotted against their
chromosomal location on NCBI34 coordinates of the human genome.
DOI: 10.1371/journal.pgen.0010078.g002

Table 1. Comparison of Multiple-Test Correction Methods

Multiple

Correction Method

Number of

Associated Genes

Percent

of Genes

Overlap

Bonf-cis Perm-wg Perm-cis Perm-cis-enrich FDR-cis FDR-cis-trim

Bonf-wg 6 1.61 3 3 3 3 3 3

Bonf-cis 10 2.69 3 10 10 10 10

Perm-wg 3 0.81 3 3 3 3

Perm-cis 10 2.69 10 10 10

Perm-cis-enrich 44 11.83 38 20

FDR-cis 40 10.75 20

FDR-cis-trim 20 5.38

DOI: 10.1371/journal.pgen.0010078.t001
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Table 2. Genes with Significant cis and trans Associations

Configuration Genes Chromosome ENCODE/

Other

max

�log10p

Bonf-

gw

Bonf-

cis

Perm-

gw

Perm-

cis

Perm-

cis-

enrich

FDR-

cis

FDR-

cis-

trim

Magnitude

of the Effect

(r2)

cis ARD1 X ENm006 3.6366 � 0.20

ARHGAP4 X ENm006 3.7907 � 0.21

AXIN1 16 ENm008 4.4455 � � 0.24

C16orf35 16 ENm008 3.5721 � 0.19

C20orf111 20 Chr20_10Mb 4.0950 � � 0.23

C20orf121 20 Chr20_10Mb 3.7650 � 0.21

C20orf164 20 Chr20_10Mb 3.8911 � 0.21

C20orf44 20 ENr333 3.2331 � 0.17

C20orf52 20 ENr333 4.0890 � � 0.22

C20orf64–001 20 Chr20_10Mb 4.0522 � 0.22

C21orf56 21 Chr21_notENC 6.9018 � � � � � 0.37

C21orf70 21 Chr21_notENC 4.5845 � � 0.26

C21orf77 21 ENm005 4.6705 � � 0.26

C21orf91 21 Chr21_notENC 3.8836 � 0.21

CAV2 7 ENm001 9.4288 � � � � � 0.49

CCT8 21 Chr21_notENC 8.0904 � � � � � 0.43

COL6A2 21 Chr21_notENC 3.9329 � 0.22

CPNE1 20 ENr333 13.6998 � � � � � � � 0.63

CSTB 21 Chr21_notENC 7.8029 � � � � � 0.42

CTSD 11 ENm011 4.4827 � � 0.25

CXorf12 X ENm006 3.9018 � 0.21

DSCR5 21 Chr21_notENC 4.5749 � � 0.26

FLJ10996 2 ENr121 3.7049 � 0.20

FLJ35954 5 ENr221 3.7957 � 0.21

HRMT1L1 21 Chr21_notENC 9.5321 � � � � � 0.50

IFNGR2 21 ENm005 5.7630 � � � 0.32

ILT7 19 ENm007 5.2516 � � � 0.29

ITGB4BP 20 ENr333 3.4399 � 0.18

KIAA1094 9 ENr232 4.8315 � � � 0.27

L3MBTL 20 Chr20_10Mb 3.9418 � 0.22

LIR9 19 ENm007 4.0840 � � 0.23

MGC33648 5 ENr221 4.9237 � � � 0.27

MGC5566 20 Chr20_10Mb 5.2277 � � � 0.29

MRPL28 16 ENm008 6.2193 � � � 0.34

NCOA5–001 20 Chr20_10Mb 3.7999 � 0.21

NDUFV3 21 Chr21_notENC 6.0658 � � � 0.34

NR2E1 6 ENr323 5.5423 � � � 0.31

NRIP1 21 Chr21_notENC 4.0773 � � 0.22

P4HA2 5 ENm002 3.7150 � 0.20

PCNT2 21 Chr21_notENC 4.4726 � � 0.25

PIGT 20 Chr20_10Mb 4.4817 � � 0.25

PIP5K1A 1 ENr231 4.0464 � 0.22

PLCG1 20 Chr20_10Mb 4.1189 � � 0.23

PLTP 20 Chr20_10Mb 3.8305 � 0.21

PRDM15 21 Chr21_notENC 4.4837 � � 0.25

PTE1–004 20 Chr20_10Mb 4.2225 � � 0.23

RENBP X ENm006 4.6751 � � 0.26

SERF2 15 ENr233 3.1353 � 0.17

SERPINB10 18 ENr122 12.6458 � � � � � � � 0.60

SFRS6–002 20 Chr20_10Mb 8.2385 � � � � � 0.44

SLC37A1 21 Chr21_notENC 4.2680 � � 0.24

SPATA2 20 Chr20_10Mb 4.7705 � � � 0.27

ST7 7 ENm001 3.8667 � 0.21

TAZ X ENm006 3.5172 � 0.19

TFPT 19 ENm007 4.1246 � � 0.23

TMEM8 16 ENm008 9.8911 � � � � � � � 0.50

TOMM34 20 Chr20_10Mb 4.3033 � � 0.24

TSGA2 21 Chr21_notENC 5.6050 � � � 0.31

TTC3 21 Chr21_notENC 7.4198 � � � � � 0.40

UBE2G2 21 Chr21_notENC 4.0004 � 0.22

UBE2V1 20 Chr20_10Mb 3.8196 � 0.21

YWHAB 20 Chr20_10Mb 3.7916 � 0.21

ZNF259 11 ENm003 3.9973 � 0.22

trans DSCR6 21 Chr21_notENC 10.8649 � NA NA NA NA NA 0.55

HBD 11 ENm009 10.8211 � NA NA NA NA NA 0.55

KIAA1441 1 ENr231 11.2223 � NA NA NA NA NA 0.55

DOI: 10.1371/journal.pgen.0010078.t002
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effect stems from the fact that cis regions are candidate
regions to contain regulatory elements that influence the
proximal genes, while it is harder to select a priori such
regions from the rest of the genome. Therefore, our ability to
detect more cis effects is not necessarily because larger effects
occur more frequently in cis regions, but because we had more
power when performing the analysis in cis regions. In order to
estimate the power given the experimental design, one can
perform power calculations. However, such calculations
require many assumptions about the data. An alternative,
given the multiple test correction we have performed, is to
describe the magnitude of the effect that each of our analyses
can detect. The adjusted r2 values from the linear regression
provide an estimate of the fraction of variation that is
explained by an individual SNP. Based on the adjusted r2

values from the linear regression performed for the SNPs with

the lowest p-values (cis or trans), we have more than 80% power
to detect effects of r2 � 0.50 when genome-wide correction
(Bonf-gw or Perm-gw) is applied and the type I error is set to
0.05. When we perform the correction based on the 1-Mb
distance from the corresponding gene, we have more than
80% power to detect effects with r2 � 0.22. The magnitude of
individual effects of SNPs for each gene is illustrated in Table
2. The average r2 value for the three genes deemed significant
by Perm-gw was 0.58; average r2 was 0.48 for the ten genes
called significant by the Perm-cis analysis, and average r2 was
0.27 for all 63 genes that had a significant cis- signal according
to at least one of the methods. It should be noted that
estimates of effect size are often biased upwards in QTL
studies [27]. Overall, our analysis can only detect large effects,
and larger sample sizes are needed for the detection of smaller
but not necessarily less important regulatory effects.

Figure 3. Examples of cis- Associations from the Genome-Wide and High-Density SNP Maps

(A) Genomic location of associated SNPs close to the SERPINB10 gene. Custom tracks in the UCSC genome browser (http://genome.ucsc.edu) show the
location of the Illumina probe and proximal SNPs in the context of genome annotation. The lower horizontal black line indicates the�log10p threshold
where the corresponding q-value is 0.05 (i.e., any SNPs with values�log10p that meet or exceed this threshold are significant at the q¼ 0.05 level), and
the upper line is the Bonferroni genome-wide threshold. Additional tracks describe known genes, first-exon and promoter predictions, conserved
transcription factor binding sites, Gencode genes, RNA polymerase 2, and Transcription factor 2 binding sites, identified by Affymetrix ChIP/chip
experiments, and Sp1 and Sp3 binding sites identified by Stanford’s ChIP/chip experiments. Consensus conserved elements are shown in the final track.
HapMap LD information below is for the CEU individuals and suggests that there are two conserved haplotype clusters in this region.
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Specific Examples of Associations
The most highly significant association signal detected was

with SNPs cis- to the SERPINB10 gene, located in a region of
Chromosome 18 that harbors five additional members of the
serine (or cysteine) proteinase inhibitor, clade B (ovalbumin)
gene family (Figure 3A). The additive model identified SNPs
with highly significant association with transcript levels of
SERPINB10 distributed across two LD blocks; furthermore
both probes for this gene exhibited the same significant signal
(unpublished data). The majority of significantly associated
SNPs are located immediately upstream of the transcription
start site, while others are in the coding locus itself and

immediately downstream (Figure 3A). Linkage disequilibrium
is strong in this region (Figure 3A) and thus the stretch of
SNPs exhibiting a similar highly significant association may
actually be generated by only one or a few variants that cause
the difference in expression. The fact that there are
significantly associated cis- SNPs in two regions of high LD
surrounding this locus, suggests the possibility of two
independent regulatory variants.
One gene that is consistently significant in genome-wide

corrections is TMEM8. The gene is found on Chromosome 16
and exhibits significant p-values with the highest being 1.33

10�10 for SNPs very close to the coding sequence. An

Figure 3. Continued
(B) Genomic location of associated SNPs close to the TMEM8 and MRPL28 genes. Note the correlation between the p-values for the two genes. Custom
tracks in the UCSC genome browser show the location of the Illumina probe and proximal SNPs in the context of genome annotation. The lower
horizontal black line indicates the�log10p threshold where the corresponding q-value is 0.05 (i.e., any SNPs with values�log10p that meet or exceed this
threshold are significant at the q¼ 0.05 level), and the upper line is the Bonferroni genome-wide threshold. Additional tracks describe known genes,
first-exon and promoter predictions, conserved transcription factor binding sites, Gencode genes, RNA polymerase 2, and Transcription factor 2 binding
sites, identified by Affymetrix ChIP/chip experiments, and Sp1 and Sp3 binding sites identified by Stanford’s ChIP/chip experiments. Consensus
conserved elements are shown in the final track. HapMap LD information below is for the CEU individuals (http://genome.ucsc.edu) [39].
DOI: 10.1371/journal.pgen.0010078.g003
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intriguing observation is that another gene immediately 39 to
TMEM8, MRPL28 is also associated with the same SNPs but
with higher but still significant p-values (6.0 3 10�7) (Figure
3B). TMEM8 encodes a transmembrane protein whereas
MRPL28 encodes a ribosomal protein and is a gene transposed
from the mitochondrial genome, so there is no apparent
biological relationship between them. Both genes are in the
same orientation so an intriguing scenario is that there are
transcripts spanning both genes that are driven from a single
promoter, and this is the reason for such high correlation in
expression. Such phenomena are now commonly observed in
the human and other genomes [28]. However, expressed
sequence tag data do not support this idea since none of them
show a transcript that spans both genes. Another exciting
scenario, from an evolutionary point of view, is that MRPL28
has ‘‘landed’’ at some point in time in the vicinity of TMEM8
and recruited already existing regulatory regions in the
region, one of which was a TMEM8 regulatory region.
Subsequent segregating variation in this regulator may have
then affected the expression of both genes.

SNPs in Hybridization Probes
For each of the 40 genes showing at least one significant

association according to the FDR-cis analysis, we considered
the possibility of the influence on expression levels of SNPs
located at the probe binding sequence. We searched the
sequences of all probes for known sequence variants and
examined the entry in dbSNP (version 125; http://www.ncbi.
nlm.nih.gov/projects/SNP) to assess the likelihood of the
variant being a real SNP. We identified a total of 18 variants
in sequences of probes for 12 of the 40 genes; three of these
genes are in the set of ten loci that exhibited significant cis-
signal according to all cis methods. Of these 18 variants, eight
had no confidence that they were actual SNPs (i.e., there is no
frequency information for any population). Two SNPs had no
frequency information, but were identified twice by two
different centers. Eight variants are SNPs with genotype
frequencies, only three of which have been genotyped in the
HapMap CEU population. Of the three SNPs genotyped in
the HapMap project, one is monomorphic in CEU and the
other two are in high LD with the SNPs exhibiting the
strongest significant association in cis for the genes AXIN1
and HRMT1L1, suggesting that the observed cis associations
for these two genes may be due to the SNP presence in the
probe sequence. Other authors have noted that even with 60-
mer probes, a single SNP underlying the probe sequence can
lead to spurious cis- associations [29]. Although this is a
technical artifact, it illustrates that the experimental and
statistical methodologies described here are able to detect
signals of differential hybridization with one nucleotide
mismatch in the 50-mer probes.

Discussion

Our analysis suggests that there is an abundance of
common genetic variation that explains gene expression
differences among individuals. From a total of 374 genes with
above-background signal interrogated in 60 individuals, we
can detect genetic variants with significant effects on tran-
script level for ten to 40 genes in cis. Trans signals in three
genes are only supported by one of the two statistical
methods employed for genome-wide analysis (Bonferroni

and permutations) and are more likely to be false positives.
We therefore observed that the majority of detectable signals
are caused by SNPs located cis- to the gene, and the signal is
consistent with an additive effect of the causal variant. This
observation is consistent with previously published studies
that found a significant proportion of the intraspecific
differences in transcript level are located cis- to the gene in
question [8,10]. The fact that only a small fraction of the
genes had significant signal is likely a result of reduced power
due to the small sample size. Moreover, testing additional cell
types is likely to reveal more regulatory variants. In addition,
when we define significance thresholds by focusing on
proximal SNPs we detect many more significant associations.
This suggests that if we apply differential weighting of SNPs
based on proximity to the gene we may be able to enhance
our ability to detect significant cis effects [30]. These models
are still in an exploratory stage. An intriguing possibility is
that some of these significant regions indicate the presence of
an additional copy of the gene (cis or trans) due to copy
number polymorphisms [CNPs; 31,32], and in fact we have
identified the haplotype with the additional copy of the gene.
For example, C16orf15 which is significant only for Perm-cis-
enrich overlaps with a known copy number variant (http://
projects.tcag.ca/variation). Our methodology may thus help
identify the map position of excess gene copies. Such cases
will be examined when we have copy number polymorphism
data for these individuals. Other alternative explanations are
that the mapped SNPs tag variants that affect mRNA stability,
mRNA trafficking, and other post-transcriptional effects.
In order to assess alternative approaches to dealing with

the massive multiple testing problem faced here, we have
applied three standard methodologies. The fact that there is
substantial overlap of the signals detected from all three
suggests that most signals in our analysis are robust and more
likely to be true positives, given the distinct theoretical basis
for the Bonferroni, permutation, and FDR tests. Such a test of
robustness to assumptions in multiple test correction may
ultimately be necessary when the number of tests is so large.
This will become an even bigger problem when one accounts
for potential interactions between SNPs, something we have
not addressed in the present study. Given the fact that each
phenotype has its own properties of variance and inher-
itance, it seems unlikely that genome- and experiment-wide
thresholds provide the optimal means for assessing signifi-
cance. Experimental validation of such targets is the next
priority [29], and in order for it to be informative one has to
consider not only the top few signals but sample from a wide
range of significance levels. In fact, it is not yet obvious that
what appears to be the most statistically significant effect is
the most biologically relevant effect. True validation will
require the elucidation of the complete biological effect,
rather than a first-pass, low sensitivity, experimental valida-
tion procedure.
Perhaps the most promising aspect of studies of gene

expression variation mapping is the impact it can have on
interpretation of functional genomic information and func-
tional variation. For instance, most of the experimental
methodologies that identify regulatory regions in humans
rely on experimental procedures that, although they can
elucidate the regulatory potential of a region (e.g., binding
assays, transfection assays, etc.), they are not able to pinpoint
the gene which interacts with the candidate regulatory
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region. If one couples these experimental procedures with
the methodology described in the present study, direct links
between regulatory regions and genes can be identified,
which will facilitate biological interpretations. In addition,
such an approach can greatly facilitate the interpretation of
genotype-phenotype (disease) associations when the mapped
regions fall into non-coding regions of the genome with no
annotated functional DNA.

We have demonstrated that it is feasible to map genetic
variants affecting gene expression by genome-wide associa-
tion testing. The HapMap samples, which have been
genotyped for more than 3.5 million SNPs, offer a powerful
resource for such gene expression studies as well as for other
studies that measure quantitative traits at the cellular level. It
has been hypothesized that the genetic basis of complex traits
and diseases is largely regulatory [33,34] and such studies may
point to potential disease variants. The sets of genes screened
in this study are of a strategic nature. The ENCODE regions
will soon have accumulated large amounts of functional data,
some of which are relevant to gene regulation [20]. We
already see patterns of correlation between the location of
the associated SNPs and the regulatory active regions (see
Figure 3A), which will greatly enhance our ability to interpret
the effect of associated variants. Also, Trisomy of HSA21
causes Down syndrome (i.e., gene dosage effect) and the
elucidation of expression allelic variants will facilitate the
discovery of genes associated with the variable Down
syndrome phenotypes such as the congenital heart defect
present in 40% of patients with Down syndrome [35]) The 10
Mb region of chr20 is known to be associated with type II
diabetes and obesity [36], and the discovery of allelic
expression variants may reveal potential causal candidates
for this association. Mapping of gene expression phenotypes
in cell lines of heavily genotyped samples will provide a
baseline resource that will greatly facilitate the fine mapping
of disease variants in human populations [37]. We have
demonstrated that the use of multiple methods for statistical
inference greatly facilitates the interpretation of results and
generates stronger candidates for experimental follow-up.
Our results have important implications, both for the
regulatory landscape of the human genome, as well as for
the choice of the type of variation one needs to interrogate
for disease association studies.

Materials and Methods

RNA preparation. Total RNA was extracted from the 60 HapMap
parental CEU lymphoblastoid cell lines (Coriell, Camden, New Jersey,
United States). Two one-quarter scale Message Amp II reactions
(Ambion, Austin, Texas, United States) were performed for each RNA
extraction using 200 ng of total RNA. Biotin-16-UTP (Perkin Elmer,
Wellesley, California, United States) made up half of the UTP used in
the in vitro transcription (IVT) reaction. cRNA yields were quantified
using RiboGreen (Invitrogen, Carlsbad, California, United States). 1
lg of the cRNA was then hybridized to an array.

Gene expression quantification. We designed a custom expression
array bead pool with 1,433 unique bead types (two for each of 630
genes, plus controls) each with ;50,000 50-mer probes using Illumina
Bead Arrays (Illumina, San Diego, California, United States). Our
custom arrays include 321 protein coding ENCODE genes (excluding
Chromosome 21), 191 protein coding genes from Chromosome 21,
and 118 protein coding gene transcripts from 20q12–13.2. Bead pools
were added to bundles of 50,000 fiber optic filaments which were
arrayed into an 8312 Sentrix Array Matrix (SAM) so that 96 arrays
could be run in parallel. Each bead type (probe) is present on a single
array on average 30 times. Each of the two IVT reactions from the 60

samples was hybridized to three arrays, so that each cell line had six
replicate hybridizations. Twelve cell lines had two extra replicates run
from one of their IVT reactions, giving them eight replicates, for a
total of 384 arrays. cRNA was hybridized to arrays for 18 h at 55 8C
before being labelled with Cy3-streptavidin (Amersham Biosciences,
Little Chalfont, United Kingdom) and scanned with a Bead Station
(Illumina).

Post-experimental raw data processing. Normalization. With the
Illumina bead technology, a single hybridization of RNA from one
cell line to an array produces on average approximately 30 intensity
values for each of 1,433 bead types. These background-corrected
values for a single bead type are subsequently summarized by the
Illumina software and output to the user as a set of 1,433 intensity
values for each individual hybridization. These raw data were then
normalized on a log scale using a quantile normalization method [38].
The expression measurements from the 384 array bundles then have
the same distribution.

Averaging replicates. In our experiment, each cell line was
hybridized to six or eight arrays, thus resulting in six or eight
reported intensity values (as averages of the values from the 30 beads
per probe) for each of the 1,433 bead types. To combine data from
our multiple replicate hybridizations, we averaged these normalized
intensity values for each bead type to obtain a single value for each of
the 1,433 bead types for each individual. These averages (for each
probe, across replicates for each individual) of normalized average
values are the values used in subsequent analyses.

Association analyses. The whole genome association analysis
employed 753,712 SNP genotypes with minor allele frequency above
5% from the HapMap 5k map (version 16b). Of the 1,405 probes
(excluding control probes), we chose the 688 most variable probes
(corresponding to 374 unique genes) to use in the association analyses
after excluding probes with extreme outliers.

For each of the selected probes and for each SNP, we fitted the
following model: the genotype Xi of individual i at the given SNP may
be classified as one of three states: Xi¼0, 1, or 2 for homozygous rare,
heterozygous and homozygous common alleles, respectively. For this
additive model, we fitted a linear regression of the form

Yi ¼ b0 þ b1Xi þ ei

where Yi is the normalized log-expression level of the probe for
individual i, i¼ 1,. . ., 60, and ei are independent normally distributed
random variables with mean 0 and constant variance. We report the
nominal, parametric p-value of the test of no association, i.e., b1 ¼ 0.

Multiple-test correction. We have employed three approaches for
multiple-test correction, namely Bonferroni, assignment of signifi-
cance based on permutation of phenotypes to the genotypes, and
FDR. The first two were applied to both genome-wide analysis and cis
analysis (1 Mb) and the FDR was applied only to cis analysis (1 Mb) due
to the computational limitations, since the number of genome-wide
p-values was too large to be analyzed.

Supporting Information

Figure S1. Chromosomal Location of 63 Genes

Chromosome banding, karyotype cartoon showing the location of the
321 ENCODE genes, the 191 Chromosome 21 genes, and the 118
genes from 20q12–13.2.

Found at DOI: 10.1371/journal.pgen.0010078.sg001 (35 KB PPT).

Figure S2. Correlation between Gene Expression Phenotype Measure-
ments as Quantified by Pairs of Probes Corresponding to the Same
Gene

Included are pairs of probes from the set of 688 analyzed probes.

Found at DOI: 10.1371/journal.pgen.0010078.sg002 (45 KB PPT).

Figure S3. Examples of cis- Associations from the Genome-Wide and
High-Density SNP Maps; CPNE1 Locus

Found at DOI: 10.1371/journal.pgen.0010078.sg003 (127 KB PDF).
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the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo) database (Series Accession Number GSE3612). The accession
numbers of the genes mentioned herein include: AXIN1
(NM_181050.1), CPNE1 (NM_152926.1), CSTB (NM_000100.2),
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HRMT1L1 (NM_001535.1), MRPL28 (NM_006428.2), SERPINB10
(NM_005024.1), and TMEM8 (NM_021259.1).
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