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Alternative isoform regulation in human
tissue transcriptomes
Eric T. Wang1,2*, Rickard Sandberg1,3*, Shujun Luo4, Irina Khrebtukova4, Lu Zhang4, Christine Mayr5,
Stephen F. Kingsmore6, Gary P. Schroth4 & Christopher B. Burge1

Through alternative processing of pre-messenger RNAs, individual mammalian genes often produce multiple mRNA and
protein isoforms thatmay have related, distinct or even opposing functions. Herewe report an in-depth analysis of 15 diverse
human tissue and cell line transcriptomes on the basis of deep sequencing of complementary DNA fragments, yielding a
digital inventory of gene and mRNA isoform expression. Analyses in which sequence reads are mapped to exon–exon
junctions indicated that 92–94%of human genes undergo alternative splicing,,86%with aminor isoform frequency of 15%
or more. Differences in isoform-specific read densities indicated that most alternative splicing and alternative cleavage and
polyadenylation events vary between tissues, whereas variation between individualswas approximately twofold to threefold
less common. Extreme or ‘switch-like’ regulation of splicing between tissues was associated with increased sequence
conservation in regulatory regions and with generation of full-length open reading frames. Patterns of alternative splicing
and alternative cleavage and polyadenylation were strongly correlated across tissues, suggesting coordinated regulation of
these processes, and sequence conservation of a subset of known regulatory motifs in both alternative introns and 39
untranslated regions suggested common involvement of specific factors in tissue-level regulation of both splicing and
polyadenylation.

The mRNA and protein isoforms produced by alternative processing
of primary RNA transcripts may differ in structure, function, local-
ization or other properties1,2. Alternative splicing in particular is
known to affect more than half of all human genes, and has been
proposed as a primary driver of the evolution of phenotypic comple-
xity inmammals3,4.However, assessment of the extent of differences in
mRNA isoform expression between tissues has presented substantial
technical challenges5. Studies using expressed sequence tags have
yielded relatively low estimates of tissue specificity, but have limited
statistical power to detect differences in isoform levels6–8. Microarray
analyses have achieved more consistent coverage of tissues9, but are
constrained in their ability to distinguish closely related mRNA iso-
forms. High-throughput sequencing technologies have the potential
to circumvent these limitations by generating high average coverage of
mRNAs across tissues while using direct sequencing rather than
hybridization to distinguish and quantify mRNA isoforms10,11.

Tissue-specific alternative splicing is usually regulated by a com-
bination of tissue-specific and ubiquitously expressed RNA-binding
factors that interact with cis-acting RNA elements to influence spli-
ceosome assembly at nearby splice sites1,2. Many factors can both
activate and repress splicing in different contexts, with activity often
summarizable by an ‘RNA map’ describing dependence on the loca-
tion of binding relative to that of core spliceosomal components12,13.

A digital inventory of mRNA isoforms

To assess gene and alternative mRNA isoform expression, the mRNA-
Seq protocol (Supplementary Methods) was used to amplify and
sequence between 12million and 29million 32-base-pair (bp) cDNA
fragments from ten diverse human tissues and fivemammary epithelial

or breast cancer cell lines, generating over 400million reads in total
(Supplementary Fig. 1a). Tissue samples were derived from single
anonymous unrelated individuals of both sexes; for one tissue, cerebel-
lar cortex, samples from six unrelated men were analysed to assess
variation between individuals (Supplementary Table 1). In total,
,60% of reads mapped uniquely to the genome, allowing up to 2
mismatches, and anadditional 4%mappeduniquely to splice junctions.
Thus, about two-thirds of reads could be assigned unambiguously to
individual genes; the frequency of mapping to incorrect genomic loca-
tions was estimated to be,0.1% (Supplementary Table 2).

Read density (coverage) was over 100-fold higher in exons than in
introns or intergenic regions (Supplementary Fig. 1c), and only,3%
of reads mapped to ribosomal RNA genes, indicating that most reads
derived from mature mRNA. Comparison of relative mRNA-Seq
read densities to published quantitative polymerase chain reaction
with reverse transcription (RT–PCR) measurements for 787 genes in
two reference RNA samples14 yielded a nearly linear relationship
across ,5 orders of magnitude (Supplementary Fig. 1d), indicating
that mRNA-Seq read counts give accurate relative gene expression
measurements across a very broad dynamic range10.

Alternative splicing is nearly universal

The mRNA-Seq data were used to assess the expression of alternative
transcript isoforms in human genes, as illustrated for the mitochon-
drial phosphate transporter gene SLC25A3 in Fig. 1a. Exons 3A and
3B of this gene are ‘mutually exclusive exons’ (MXEs), meaning that
transcripts from this gene contain one or the other of these exons, but
not both. Much greater read coverage of exon 3A was seen in heart
and skeletal muscle, with almost exclusive coverage of exon 3B in
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testes and liver (as well as in other tissues studied), consistent with the
predominant heart and muscle symptoms of exon 3A mutation15.

The genome-wide extent of alternative splicing was assessed by
searching against known and putative splicing junctions using strin-
gent criteria that required each alternative isoform to be supported by
multiple independent splice junction reads with different alignment
start positions. Binning the multi-exon genes in the RefSeq database
(94% of all RefSeq genes) by read coverage and fitting to a sigmoid
curve enabled estimation of the asymptotic fraction of alternatively
spliced genes in this set as ,98% when excluding cell line data
(Supplementary Fig. 2) and ,100% when using all samples
(Fig. 1b). This analysis indicated that alternative splicing is essentially
universal in human multi-exon genes, which comprise 94% of genes
overall, with the important qualification that a portion of detected
alternative splicing events may represent allele-specific splicing16,17.

Some of these events may involve exclusively low frequency alter-
natively spliced isoforms. However, 92% of multi-exon genes were
estimated toundergo alternative splicingwhen consideringonly events
for which the relative frequency of the minor (less abundant) isoform
exceeded 15% in one or more samples (Fig. 1c). Thus, 0.923 0.94 or
,86%of human genes were estimated to produce appreciable levels of
two or more distinct populations of mRNA isoforms. Conversely, no
evidence of alternative splicing was detected in the 6% of RefSeq genes
annotated as consisting of a single exon, even when searching against
junctions between predicted exons in these genes.

New exons and splice junctions not previously seen in transcript
databases were identified by mapping the reads against predicted
exons and junctions. This approach yielded a set of 1,413 high-con-
fidence new exons (Supplementary Table 3), with an estimated false
discovery rate (FDR) of ,1.5% (Supplementary Information), and
thousands of putative new splice junctions (not shown). Thus,
mRNA-Seq has strong potential for discovery of new exons, although
very substantial read depth is required to efficiently detect low-
abundance isoforms (Supplementary Fig. 3).

Tissue-specific isoform expression

To explore the extent of tissue regulation of alternative transcripts,
we examined eight common types of ‘alternative transcript events’1,2,
each capable of producing multiple mRNA isoforms from human

genes through alternative splicing, alternative cleavage and polyade-
nylation (APA) and/or alternative promoter usage (Fig. 2). Event
types considered included skipped exons and retained introns, in
which a single exon or intron is alternatively included or spliced
out of the mature message, and MXEs, described previously. Also
included were alternative 59 splice site (A5SS) and alternative 39
splice site (A3SS) events, which are particularly difficult to interrog-
ate by microarray analysis because the variably included region is
often quite small. Tandem 39 untranslated regions (UTRs) and
alternative last exons (ALEs), in which alternative use of a pair of
polyadenylation sites results in shorter or longer 39UTR isoforms or
in distinct terminal exons, respectively, were also considered. Finally,
we considered alternative first exons (AFEs), in which alternative
promoter use results in mRNA isoforms with distinct 59UTRs.

For each of these event types, reads deriving from specific regions
can support the expression of one alternative isoform or the other
(Fig. 2). The ‘inclusion ratio’, defined as the ratio of the number of
‘inclusion’ (blue) reads to inclusion plus ‘exclusion’ (red) reads, can
be used to detect changes in the proportions of the corresponding
mRNA isoforms. The fraction of mRNAs that contain an exon—the
‘per cent spliced in’ (PSI orY) value—can be estimated as the ratio of
the density of inclusion reads (that is, reads per position in regions
supporting the inclusion isoform) to the sum of the densities of
inclusion and exclusion reads.

To assess tissue-regulated alternative splicing, a comprehensive set of
,105,000 events of these eight typeswas derivedon the basis of available
human cDNA and expressed sequence tag data. Reads supporting both
alternative isoforms were observed for more than one-third of these
events (Fig. 2), and the extent of tissue-specific regulation of these events
was assessed by comparison of the inclusion ratio in each tissue relative
to the other tissues, requiring a minimum of a 10% absolute change in
inclusion ratio (Supplementary Fig. 4). Naturally, transcripts or iso-
forms identified as being differentially expressed between tissues will
reflect the combined effects of cell-type-specific differences in transcript
levels, variation in the relative abundances of cell types between tissues,
and variations between the individuals from whom the tissues derived.

Notably, a high frequency of tissue-specific regulation was
observed for each of the eight event types, including over 60% of
the analysed skipped exon, A5SS, A3SS and tandem 39UTR events
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Figure 1 | Frequency and relative abundance of alternative splicing
isoforms in human genes. a, mRNA-Seq reads mapping to a portion of the
SLC25A3 gene locus. The number of mapped reads starting at each
nucleotide position is displayed (log10) for the tissues listed at the right. Arcs
represent junctions detected by splice junction reads. Bottom: exon/intron
structures of representative transcripts containing mutually exclusive exons
3A and 3B (GenBank accession numbers shown at the right). b, Mean
fraction of multi-exon genes with detected alternative splicing in bins of 500
genes, grouped by total read count per gene. A gene was considered as

alternatively spliced if splice junction reads joining the same 59 splice site
(59SS) to different 39 splice sites (39SS) (with at least two independently
mapping reads supporting each junction), or joining the same 39SS to
different 59SS, were observed. The true extent of alternative splicing was
estimated from the upper asymptote of the best-fit sigmoid curve (red
curve). Circles show the fraction of alternatively spliced genes. c, Frequency
of alternative splicing in the top bin (black bars) and after estimation (as in
b, red bars), considering only events with relative expression of less abundant
(minor) splice variant exceeding a given threshold. Error bars, s.e.m.
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(Fig. 2 and Supplementary Table 4). In all, a set of over 22,000 tissue-
specific alternative transcript events was identified, far exceeding
previous sets of tissue-specific alternative splicing events that have
typically numbered in the hundreds to low thousands6–9,18,19. Tissue-
regulated skipped exon and MXE events are listed in Supplementary
Tables 5 and 6, respectively. Binning events by expression level com-
monly yielded sigmoid curves for the fraction of tissue-regulated
events of each type, enabling estimation of the true frequency of
tissue regulation for each event type (Supplementary Figs 5 and 6).
These estimates, ranging from 52% to 80% (Fig. 2), indicated that
most alternative splicing events are regulated between tissues, pro-
viding an important element of support for the hypothesis that
alternative splicing is a principal contributor to the evolution of
phenotypic complexity in mammals.

Individual-specific isoform expression

To assess the extent of alternative splicing isoform variation between
individuals in comparison to tissue-regulated alternative splicing, the
correlations among the vectors of inclusion ratios for all expressed
skipped exons between pairs of samples were determined (Fig. 3); this
was performed similarly for other event types (not shown). In this
analysis, strong clustering of the six cerebellar cortex samples was
observed, with generally higher correlations among these samples
than between pairs representing distinct tissues. Strong clustering
of the five cell lines was also observed. This probably results from a
combination of factors, including the common mammary epithelial

origin of the cell lines studied, similar adaptations to culture condi-
tions, and the high diversity of the tissues chosen.

The extent of variation in alternative isoform expression between
individuals was also addressed by determining the number of differ-
entially expressed exons among the six cerebellar cortex samples.
Using the same approach as in Fig. 2, between ,10% and 30% of
alternative transcript events showed individual-specific variation,
depending on the event type (Supplementary Fig. 7), providing
updated estimates of the scope of mRNA isoform variation between
individuals16. These numbers are higher than estimates based on
microarray analyses20, but are in general agreement with an inte-
grated analysis of multiple data types that estimated that ,21% of
alternatively spliced genes are affected by polymorphisms that alter
the relative abundances of alternative isoforms17. However, these
frequencies are still below the 47–74% of events that showed vari-
ation among the ten tissues (Fig. 2), and approximately twofold to
threefold less than the frequencies observed in comparisons among
subsets of six tissues (Supplementary Fig. 7), indicating that,
although inter-individual variation is fairly common, it is still sub-
stantially less frequent than variation between tissues. Thus, most of
the differences observed between tissue samples are likely to represent
tissue-specific rather than individual-specific variation.

Switch-like alternatively spliced exons

The quantitative nature of the mRNA-Seq approach allowed assess-
ment of both subtle and switch-like alternative splicing events. By
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Figure 2 | Pervasive tissue-specific regulation of alternative mRNA
isoforms. Rows represent the eight different alternative transcript event
types diagrammed. Mapped reads supporting expression of upper isoform,
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Columns 1–4 show the numbers of events of each type: (1) supported by
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technical variation10). Columns 5 and 6 show: (5) the observed percentage of
eventswith both isoforms detected that were observed to be tissue-regulated;
and (6) the estimated true percentage of tissue-regulated isoforms after
correction for power to detect tissue bias (Supplementary Fig. 6) and for the
FDR. For some event types, ‘common reads’ (grey bars) were used in lieu of
(for tandem 39UTR events) or in addition to ‘exclusion’ reads for detection
of changes in isoform levels between tissues.
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comparing inclusion levels of skipped exons between tissues, a class of
‘switch-like’ exonswas observed that hadmarkedly different inclusion
levels between different tissues (shown for heart versus nine other
tissues in Fig. 4a). The examples shown in colour in Fig. 4a (for

example, TPM1 exon 2, with Y of 2% in heart and 95% in skeletal
muscle, and the SLC25A3MXE pair shown in Fig. 1a) underscore the
flexibility of the splicing regulatorymachinery, with a sizeable number
of exons being recognized predominantly as exons in one tissue and
predominantly as introns in another tissue, even for developmentally
related pairs of tissues such as heart and skeletal muscle.

To characterize functional features of such switch-like exons,
skipped exons and MXEs were divided into groups depending on
their ‘switch score’, defined as the maximum pairwise Y difference
between tissues. Switch scores for pairs ofMXEs were shifted towards
higher values relative to skipped exons (P5 3.73 1025,
Kolmogorov–Smirnov test; Fig. 4b), suggesting that MXEs are more
often involved in regulating highly tissue-specific functions.
Preservation of the reading frame in both isoforms was observed
more commonly for exons with higher switch scores both for skipped
exons, consistent with ref. 19, and to an even greater extent for MXEs
(Fig. 4c). Thus, switch-like regulation seems to be used preferentially
to express distinct ‘full-length’ protein isoforms in different tissues
rather than as a means to switch off genes through production of
truncated proteins or of messages subject to nonsense-mediated
mRNA decay21. Indeed, genes containing skipped exons with high
switch scores were enriched for Gene Ontology functional categories
including ‘developmental processes’, ‘cell communication’, ‘signal
transduction’ and ‘regulation of metabolism’ that are likely to con-
tribute to fundamental differences in the biology of different human
tissues (Supplementary Table 7).

Notably, skipped exons with switch scores exceeding 0.5 showed
higher sequence conservation in the regulated exon itself19 and in
portions of the flanking introns than exons with lower switch scores
(Fig. 4d). This observation suggested that such exons are of unusual
biological importance and that switch-like regulation between tissues
requires the presence of additional splicing regulatory sequence
information, particularly in adjacent intronic regions.
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FOX-1 and FOX-2 activity map

Among the best-characterized tissue-specific splicing factors are the
FOX-1 (also known as A2BP1) and FOX-2 (RBM9) proteins, which
bind RNA cis-elements that contain UGCAUG hexanucleotides or
closely related sequences22–24. Analysis of UGCAUG frequencies
revealed substantial enrichment in the intron immediately downstream
of exons with increased inclusion in heart, skeletal muscle, brain and
cerebellar cortex (Fig. 4e)—tissues where FOX proteins are highly
expressed, suggesting common splicing activation activity in this loca-
tion22–24. Enrichment of UGCAUG hexanucleotides was also noted
upstream of exons that had reduced inclusion in skeletal muscle, sug-
gesting possible repressive activity in this context. This example illus-
trates the power of these expanded tissue-specific exon sets for inference
of ‘tissue RNA maps’, summarizing both the location-dependent acti-
vity and tissue specificity of splicing regulatory elements.

Applying a similar approach to analyse enrichment of all hexanu-
cleotides in regions adjacent to tissue-specific exons identified 362
motif/tissue enrichment patterns (at an estimated 17% FDR), repre-
senting hexanucleotides that showed significant enrichment adjacent
to exons with increased or decreased inclusion in specific cell lines or
tissues (Supplementary Table 8). Enrichment of UGCAUG down-
stream of exons with high inclusion in skeletal muscle appears as
the third most significant motif/tissue pair, after enrichment of
UCUCUC and CUCUCU (resembling the binding motifs of PTBP1
(also known as PTB) and PTBP2 (nPTB)25) upstream of exons with
increased inclusion in cerebellar cortex. The remaining motif/tissue
pairs contained a variety of known regulatory elements, including
ACUAAC (see later), as well as putative new regulatory motifs.

Coordination of splicing and polyadenylation

Tandem 39UTR events showed an even higher frequency of tissue-
regulated expression than skipped exons or other alternative splicing
events studied (Fig. 2), yet little is known about how tissue regulation
of tandem UTRs is accomplished (for example, whether through
APA or through the differential stability of alternative UTR iso-
forms). By grouping tandem 39 UTRs by switch score, the most
switch-like events showed increased sequence conservation relative
to events with lower switch scores in the vicinity of and upstream of
the proximal (59) polyadenylation signal (PAS), and also upstream of
the distal (39) PAS (Fig. 5a). Whereas cis-regulatory elements con-
tributing to differential stability should be located predominantly in
the region unique to the long UTR isoform, APA could be regulated
by elements located near to either or both PASs. The observation of
increased conservation around and upstream of the proximal PAS in
switch-like tandemUTRs therefore supports a primary role for regu-
lation at the level of APA.

In assessing the spectrum of cis-elements that may drive tissue
regulation of tandem 39UTRs, a set of heptanucleotides was iden-
tified that showed high conservation in the extension region of tan-
dem 39UTRs (Fig. 5a, inset), with signal:background ratios in four
mammals26 exceeding 2:1. As expected, this set included the extended
(seven-base) seed matches to a number of conserved mammalian
microRNAs (miRNAs)26–28. Surprisingly, it also included all eight
of the heptanucleotides that contain the FOX-1/FOX-2 consensus
bindingmotif, UGCAUG: all such heptanucleotides had signal/back-
ground ratios above 2.5:1, exceeding the signal/background ratio
observed for seed matches to important miRNAs such as miR-7
and miR-181 (inset, Supplementary Table 9). Strong conservation
ofUGCAUGmotifs in this location (.1 kilobase on average from the
nearest splice site) would not be expected on the basis of the canon-
ical splicing regulatory activity of FOX-1/FOX-2 proteins. Instead,
the high conservation observed in extended 39UTR regions suggests
that these factors (or others with identical RNA-binding specificity)
have additional 39UTR-related roles, for example, in APA or in
mRNA localization and/or translation.

To investigate possible connections between tissue-specific regu-
lation of alternative splicing and APA further, global patterns of

tissue-specific alternative isoform expression were compared. By
applying singular value decomposition (SVD) (Supplementary
Methods) to the vectors of inclusion ratios across samples for each
alternative splicing and APA event type separately, a strong and con-
sistent separation of the breast cell lines (four cancer-derived and one
immortalized cell line) from all tissue samples was observed (Fig. 5c,
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by switch score. Inset, increased conservation of FOX-1/FOX-2 motifs in
tandem 39UTR extension regions. All non-CpG-containing
heptanucleotides (grey line), miRNA seed matches (black), and 7-mers
containing UGCAUG (red) are shown. b, SVD analysis of skipped exon
inclusion ratio values across tissues and cell lines for skipped exons meeting
minimum read coverage criteria in each of the 14 samples. Projections are
shown in the dimensions corresponding to the two leading eigenvalues,
which accounted for 25% of the variance. c, SVD analysis of tandem UTR
inclusion ratio values (as in b). d, SVD analysis was conducted for the 14
samples on the basis of inclusion ratio values for the five indicated
alternative transcript event types or on the basis of gene expression values.
Spearman correlations between corresponding pairwise distances in
projections of the sort shown in b and c are shown. e, Signal:background
(S:B) ratios of non-CpG-containing hexanucleotides in introns flanking
skipped exons (x-axis) and in extended 39UTR regions (y-axis). The
canonical PAS hexanucleotide AAUAAA (black triangle), hexanucleotides
corresponding to seed matches to conserved mammalian miRNAs (black
dots), hexanucleotides corresponding to binding motifs for the indicated
splicing or 39UTR-binding factors (coloured), and other hexanucleotides
(small gray dots) are shown.
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d). This separation implied the existence of a systematic difference in
RNA processing regulation between cell lines and tissues that held for
all types of alternative events studied. For most alternative splicing
andAPA events, SVD analysis yielded similar groupings of tissues, for
example, with heart, skeletal muscle, brain and liver consistently
clustered (Supplementary Fig. 8). Consistent with this observation,
pairwise distances between SVD projections for different types of
alternative splicing events, for example, skipped exons, A5SS and
A3SS events, were all highly correlated (Fig. 5e), suggesting similar-
ities in the regulatory control of these types of events1,2,13. More
surprisingly, distances between SVD projections for tandem
39UTR events also correlated highly with distances for events con-
trolled purely at the level of splicing such as skipped exons (Fig. 5e).
This observation raised the possibility that splicing and polyadenyla-
tion may be coordinately regulated across human tissues.

To explore possible regulatory connections between splicing and
polyadenylation regulation (for example, refs 29–32), the conser-
vation of hexanucleotides adjacent to conserved alternative splicing
and APA events was compared. Whereas canonical 39UTR regula-
tory motifs such as the consensus PAS hexanucleotide AAUAAA and
various miRNA seed matches showed high signal:background ratios,
often 1.5:1 or higher, in extended 39UTR regions, these motifs gen-
erally had signal/background ratios close to 1:1 in alternatively
spliced introns. However, a distinct subset of motifs with high sig-
nal:background ratios in both UTRs and introns was also observed,
several of which corresponded to well-known splicing-related motifs
(Fig. 5h and Supplementary Table 9). This set included not only the
FOX-1/FOX-2 motif UGCAUG and variations, consistent with the
heptanucleotide analysis of Fig. 5a, but also permutations of (CUG)n,
which represent putative substrates of the bruno-like (BRUNOL, also
known as CELF) and muscleblind-like (MBNL) families of muscle-
and brain-specific splicing factors33. The highly significant
signal:background ratio in both 39UTRs and introns suggested that
these well-known splicing-related motifs also commonly have
39UTR-related roles—for example, control of APA or of mRNA
stability, localization or translation—as recently demonstrated for
the NOVA family of splicing factors34.

The hexanucleotide ACUAAC, an excellent match to the con-
sensus binding motifs of STAR family RNA-binding factors, in par-
ticular quaking homologue (QKI)35, was also notable. Not only did
ACUAAC have significant signal:background ratio in 39UTRs, as
expected from the known role of QKI in control of mRNA stability36,
but it also showed an extremely high signal:background ratio in
introns, exceeding 7:1. This extreme conservation suggested a com-
mon and important function in splicing regulation—a role that has
been suggested but not yet directly demonstrated9,37. Motif enrich-
ment analyses also suggested a possible role in brain-specific APA
regulation (Supplementary Fig. 9).

Discussion

We conclude that the coordination between tissue-specific alterna-
tive splicing and APA events implied by the correlated patterns of
tissue bias observed in Fig. 5 may be mediated at least in part by
tissue-specific RNA-binding factors that have roles in regulation of
both of these RNA processing steps. Such factors may include both
canonical tissue-specific splicing factors (for example, of the FOX-1/
FOX-2 and CELF families), moonlighting in 39UTR-related roles,
and also canonical UTR-binding factors such as QKI. Such func-
tional duality has the potential to enable tightly coordinated regu-
lation of polyadenylation and splicing, ensuring that the appropriate
UTR regulatory sequences are expressed in conjunction with the
coding regions for the relevant tissue-specific protein isoforms.

METHODS SUMMARY
Tissues and cell lines. Tissue samples from individual unrelated anonymous
donors (Supplementary Table 1) were obtained from Ambion for the following
tissue types: adipose, whole brain, breast, colon, heart, liver, lymph node, skeletal

muscle and testes. Cerebellar cortex samples were obtained from six anonymous
unrelated donors, according to NIH guidelines for confidentiality and privacy
using protocols described previously38. HME is a human mammary epithelial
cell line immortalized with human TERT39. The other cell lines are all breast
cancer cell lines derived from invasive ductal carcinomas (ATCC). MCF-7,
BT474 and T47D are oestrogen-receptor- and progesterone-receptor-positive;
MDA-MD435 is negative for both.
Library preparation for Illumina sequencing. Poly-T capture beads were used
to isolate mRNA from 10 mg of total RNA. First-strand cDNA was generated
using random hexamer-primed reverse transcription, and subsequently used to
generate second-strand cDNAusing RNaseH andDNApolymerase. Sequencing
adaptors were ligated using the Illumina Genomic DNA sample prep kit.
Fragments ,200 bp long were isolated by gel electrophoresis, amplified by 16
cycles of PCR, and sequenced on the Illumina Genome Analyser, as
described40,41.
Computational analyses of mRNA-Seq read data. Computational and statist-
ical methods used in analysis of the read data are described in the Supplementary
Methods. High-confidence new exons were required to be supported by at least
one splice juction read involving each splice site, and at least one exon body read;
putative new splice junctions required splice junction read support only42.
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