
smallest mean squared error. This estimate is a weighted sum of the mean of the prior and
the sensed feedback position:

xestimated ¼
j2

sensed

j2
sensed þ j2

prior

½1cm
þ
j2

prior

j2
sensed þ j2

prior

xsensed

Given that we know j2
prior; we can estimate the uncertainty in the feedback j sensed by

linear regression from Fig. 2a.

Resulting mean squared error
The mean squared error (MSE) is determined by integrating the squared error over all
possible sensed feedbacks and actual lateral shifts

MSE ¼

ð1
21

ð1
21

ðxestimated 2 xtrueÞ
2pðxsensedjxtrueÞpðxtrueÞdxsenseddxtrue

For model 1, xestimated ¼ x sensed, and this gives MSE ¼ j2
sensed :

Using the result for xestimated from above for model 2 gives
MSE ¼ j2

sensedj
2
prior=ðj

2
sensed þ j2

priorÞ; which is always lower than the MSE for model 1. If
the variance of the prior is equal to the variance of the feedback, the MSE for model 2 is half
that of model 1.

Inferring the used prior
An obvious choice of xestimated is the maximum of the posterior

pðxtruejxsensedÞ ¼
1

jsensed

ffiffiffiffiffiffi
2p

p e2ðxtrue2xsensed Þ
2=2j2

sensed pðxtrueÞ=pðxsensedÞ

The derivative of this posterior with respect to x true must vanish at xestimated. This
allows us to estimate the prior used by each subject. Differentiating and setting to zero we
get

dpðxtrueÞ

dxtrue

1

pðxtrueÞ

����
xestimated

¼
ðxestimated 2 xsensedÞ

j2
sensed

We assume that x sensed has a narrow peak around x true and thus approximate it by x true.
We insert the j sensed obtained above, affecting the scaling of the integral but not its form.
The average of x sensed across many trials is the imposed shift x true. The right-hand side is
therefore measured in the experiment and the left-hand side approximates the derivative
of log(p(x true)). Since p(x true) must approach zero for both very small and very large x true,
we subtract the mean of the right-hand side before integrating numerically to obtain
log(p(x true)), which we can then transform to estimate the prior p(x true).

Bimodal distribution
Six new subjects participated in a similar experiment in which the lateral shift was
bimodally distributed as a mixture of two gaussians:

pðxtrueÞ ¼
1

2
ffiffiffiffiffiffi
2p

p
jprior

e2ðx2xsep=2Þ2=j2
prior þ e2ðxþxsep=2Þ2=j2

prior

� �

where x sep ¼ 4 cm and jprior ¼ 0.5 cm. Because we expected this prior to be more difficult
to learn, each subject performed 4,000 trials split between two consecutive days. In
addition, to speed up learning, feedback midway through the movement was always
blurred (25 spheres distributed as a two-dimensional gaussian with a standard deviation of
4 cm), and feedback at the end of the movement was provided on every trial. Fitting the
bayesian model (using the correct form of the prior and true jprior) to minimize the MSE
between actual and predicted lateral deviations of the last 1,000 trials was used to infer the
subject’s internal estimates of both x sep and j sensed. Some aspects of the nonlinear
relationship between lateral shift and lateral deviation (Fig. 3a) can be understood
intuitively. When the sensed shift is zero, the actual shift is equally likely to be to the right
or the left and, on average, there should be no deviation from the target. If the sensed shift
is slightly to the right, such as at 0.25 cm, then the actual shift is more likely to come from
the right-hand gaussian than the left, and subjects should point to the right of the target.
However, if the sensed shift is far to the right, such as at 3 cm, then because the bulk of the
prior lies to the left, subjects should point to the left of the target.
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The question of whether it is possible to automate the scientific
process is of both great theoretical interest1,2 and increasing
practical importance because, in many scientific areas, data are
being generated much faster than they can be effectively ana-
lysed. We describe a physically implemented robotic system that
applies techniques from artificial intelligence3–8 to carry out
cycles of scientific experimentation. The system automatically
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originates hypotheses to explain observations, devises experi-
ments to test these hypotheses, physically runs the experiments
using a laboratory robot, interprets the results to falsify hypoth-
eses inconsistent with the data, and then repeats the cycle. Here
we apply the system to the determination of gene function using
deletion mutants of yeast (Saccharomyces cerevisiae) and auxo-
trophic growth experiments9. We built and tested a detailed
logical model (involving genes, proteins and metabolites) of the
aromatic amino acid synthesis pathway. In biological experi-
ments that automatically reconstruct parts of this model, we
show that an intelligent experiment selection strategy is com-
petitive with human performance and significantly outperforms,
with a cost decrease of 3-fold and 100-fold (respectively), both
cheapest and random-experiment selection.

The branch of artificial intelligence devoted to developing algo-
rithms for acquiring scientific knowledge is known as ‘scientific
discovery’. The pioneering work in the field was the development of
learning algorithms for analysis of mass-spectrometric data3. In the
subsequent 30 years much has been achieved and there are now
several convincing examples in which computer programs have
made explicit contributions to scientific knowledge4–8. However, the
general impact of such programs on science has been limited. This
could now change because the expansion of automation in science is
making it increasingly possible to couple scientific discovery soft-
ware to laboratory instrumentation5. Here we describe a novel
system that extends the existing level of integration of scientific
discovery and robotics: the ‘Robot Scientist’ (Fig. 1).

A widely accepted view of science is that it follows a ‘hypothetico-
deductive’ process1. Scientific expertise and imagination are first
used to form possible hypotheses, and then the deductive conse-
quences of these hypotheses are tested by experiment. The Robot
Scientist follows this paradigm: we employ the logical inference
mechanism of abduction10 to form new hypotheses, and that of
deduction to test which hypotheses are consistent (see Methods and
Supplementary Information). The system has been physically
implemented and conducts biological assays with minimal human
intervention after the robot is set up. The hardware platform
consists of a liquid-handling robot with its control PC, a plate
reader with its control PC, and a master PC to control the system
and do the scientific reasoning. The software platform consists of
background knowledge about the biological problem, a logical
inference engine, hypothesis generation code (abduction), experi-
ment selection code (deduction), and the Laboratory Information
Management System (LIMS) code that integrates the whole system.
The robot conducts assays by pipetting and mixing liquids on
microtitre plates. Given a computed definition of one or more
experiments, we have developed code that designs a layout of
reagents on the liquid-handling platform that will allow these
experiments, with controls, to be performed efficiently. In addition,
the liquid-handling robot is automatically programmed to plate out
the yeast and media into the correct wells. The system measures the
concentration of yeast in the wells of the microtitre trays using the
adjacent plate reader and returns the results to the LIMS (although
microtitre trays are still moved in and out of incubators manually).

The key point is that there was no human intellectual input in the
design of experiments or the interpretation of data.

To test the Robot Scientist we chose the field of functional
genomics. It is one of the most important in contemporary science
and is an area in which laboratory automation is already mature.
The current state of the art in functional genomics is to use highly
automated robotics to generate data, and then to use data-mining
systems to extract knowledge from that data. Within functional
genomics, we selected yeast (S. cerevisiae) to test the methodology.
Despite being one of the best understood of organisms, the func-
tions of about 30% of the 6,000 genes in yeast are still unknown11.
The aim was to develop a system that could automatically determine
the function of genes from the performance of knockout mutants
(strains in which one gene has been removed). We focused on the
aromatic amino acid synthesis (AAA) pathway (Fig. 2), and used
auxotrophic growth experiments to assess the behaviour (pheno-
type) of the mutants. The AAA pathway is relatively well understood
and of sufficient complexity to make reasoning about it non-trivial,
and its intermediary metabolites are commercially available. Auxo-
trophic growth experiments consist of growing auxotrophic
mutants on chemically defined media (a defined base plus one or
more intermediate or terminal metabolites in the pathway), and
observing whether growth is recovered or not (see Supplementary
Information for details). A knockout mutant is auxotrophic if it
cannot grow on a defined medium on which the wild type can grow.
Auxotrophic experiments are a classic technique for inferring
metabolic pathways9.

We needed a way of representing prior biological knowledge in
the computer, so we developed a logical formalism to model cellular
metabolism that captures the key relationship between protein-
coding sequences (open reading frames; ORFs), enzymes and
metabolites in a pathway12. All objects (ORFs, proteins and metabo-
lites) and relationships (coding, reactions, transport and feedback)
are described as logical formulae. The structure of the metabolic
pathway is that of a directed graph, with metabolites as nodes and
enzymes as arcs. An arc corresponds to a reaction. The compounds
at each node are the set of all metabolites that can be synthesized by
the reactions leading to it. Reactions are modelled as unidirectional
transformations. Using this formalism, we have implemented a
model of the AAA pathway with the logic programming language
Prolog (the complete model is provided in Supplementary Infor-
mation). Prolog makes it possible both to inspect the biological
knowledge in the model directly and to compute the predictions of
the model automatically. The model infers (deduces) that a knock-
out mutant will grow if, and only if, a path can be found from the
input metabolites to the three aromatic amino acids. This allows
the model to compute the phenotype of a particular knockout or to
be used to infer missing reactions that could explain an observed
phenotype (abduction). We consider that most hypothesis genera-
tion in modern biology is abductive. What is inferred are not general
hypotheses, which would be inductive, but specific facts about
biological entities.

The original bioinformatic information for the AAA model was
taken mainly from the KEGG13 catalogue of metabolism. The model
was then tested with all possible auxotrophic experiments involving
a single replacement metabolite, and was altered manually to fit the
empirical results. To ensure that the model was not ‘over-fitted’, we
carried out all possible auxotrophic experiments with pairs of
metabolites. The model correctly predicted at least 98.5% of the
experiments (Supplementary Information). To the best of our
knowledge, no bioinformatic model has been as thoroughly tested
with knockout mutants.

Machine learning is the branch of artificial intelligence that seeks
to develop computer systems that improve their performance
automatically with experience14,15. It has much in common with
statistics, but differs in having a greater emphasis on algorithms,
data representation and making acquired knowledge explicit. TheFigure 1 The Robot Scientist hypothesis-generation and experimentation loop.
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branch of machine learning that deals with algorithms that can
choose experiments is known as ‘active learning’16,17. If we assume
that each hypothesis has a prior probability of being correct and that
each experiment has an associated cost, then scientific experiment
selection can be formalized as the task of selecting the optimal series
of experiments (in terms of expected cost) to eliminate all except the
one correct hypothesis. This problem is, in general, computationally
intractable (NP-hard)18. However, it can be shown that the problem
is structurally the same as finding the smallest decision tree—
experiments are nodes and hypotheses are leaves19. This is signifi-
cant because a bayesian analysis of decision-tree learning has shown
that near-optimal solutions can be found in polynomial time19. This
analysis leads to the following approximate recurrence formula for
the expected cost20. Let EC(H,T) denote the minimum expected cost
of experimentation given the set of candidate hypotheses H and the
set of candidate trials T:

ECðB;TÞ ¼ 0

ECð{h};TÞ ¼ 0

ECðH;TÞ< mint[T½Ct þ pðtÞðmeant 0[ðT2tÞCt 0 ÞJH½t
 þ ð12 pðtÞ

� ðmeant 0[ðT2tÞCt 0 ÞJH½t



JH ¼2Sh[HpðhÞ blog2ðpðhÞÞc

where C t is the monetary price of the trial t, p(t) is the probability
that the outcome of the trial t is positive, and b…c is the ‘floor’
function. p(t) can be computed as the sum of the probabilities of the
hypotheses (h) that are consistent with a positive outcome of t.

In current robot-scientist experiments, it is assumed that the
system knows the biochemical equations of the AAA pathway in the
wild type. What the system does not know is how this biochemistry
is related to the genetics. The hypotheses are therefore bindings
between the ORFs and enzymic reactions; that is, which of the 15
possible ORFs in the pathway has been deleted (although only 8
ORFs were ever actually used for technical reasons, the system was
not aware of this). For example, a correct hypothesis would be
that ORF YPR060c codes for chorismate mutase (which catalyses

the reaction chorismate ! prephenate; Fig. 2). These hypotheses
are automatically generated by abducing the different possibilities
from the model12,20–22. Hypotheses are evaluated by comparing their
predicted consequences with the actual experimental results.
These logical inferences are made with our machine learning
system ASE-Progol23, where ASE stands for ‘active selection
of experiments’ (ASE-Progol is freely available to academics, from
kftp://www.comp.rgu.ac.uk/pub/staff/chb/systems/ase_progol/ver-
sion_1.0l). We compared three experimental selection strategies:
first, ASE (our approximation to choosing the experiment that
minimizes the expected cost—see above); second, Naive (which
chooses the cheapest experiment that has not yet been done); and
last, Random (which chooses a random experiment that has not yet
been done).

The performance of a strategy is defined as the average accuracy
of all hypotheses not already eliminated by experiments using that
strategy. The accuracy of a single hypothesis is the number of correct
predictions that this hypothesis makes, for all possible single-
metabolite and double-metabolite addition experiments, assuming
that the model is 100% accurate. We evaluated accuracy versus the
monetary price of the experiments (pounds sterling) and time
(iterations; that is, the number of sequential experiments).

Using the Robot Scientist, we compared the experimental strat-
egies ASE, Naive and Random over five experimental iterations
(Fig. 3a, b). At the end of the fifth iteration, ASE had an estimated
accuracy of 80.1%, in comparison with 74.0% for Naive and 72.2%
for Random. At this point in the iterative cycle of experimentation,
the ASE strategy was significantly more accurate than either Naive
(P , 0.05) or Random (P , 0.07) using a paired t-test. Given a
maximum spend of £102.26 (the maximum that Naive spends; note
that these prices are scaled), ASE has an estimated accuracy of
79.5%, in comparison with 73.9% for Naive and 57.4% for Random.
For this price, ASE is significantly more accurate than either Naive
(P , 0.05) or Random (P , 0.001). Although the AAA pathway is
sufficiently complex to provide an adequate test for the robot
scientist system, it is not so complex that the Naive and Random
strategies will not eventually achieve a high accuracy. Where ASE
shows its superiority over the other two experimental strategies is in

 
 

 

 

 
 

 

 

 

 

 

 

Figure 2 A schematic representation of the logical model of the aromatic amino acid

pathway in yeast. The metabolites are the nodes and the enzymes the arcs in the directed

graph. Metabolites that could not be used in auxotrophic experiments are in italics, and

the end-product aromatic amino acids are shown in green. The ORFs encoding the

enzyme proteins are blue if they are amenable to auxotrophic experimentation; otherwise

they are red. The logical model also represents the import of metabolites into the cell.
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cost-effectiveness. In science, as in industry, ‘time is money’
(although the conversion rate may be unclear). The experimental
cost we wish to optimize will therefore be a function of price and
time. Because ASE dominates for both, ASE is superior to Naive and
Random for any positive function of price and time. For example, to
achieve an accuracy of about 70%, ASE requires fewer trial itera-
tions, and a hundredth of the price, of Random, and almost half the
number of iterations, and a third of the price, of Naive.

We evaluated the reliability of these empirical results by running
several computer simulations of the Robot Scientist. In these we
used the AAA Prolog model and the ASE-Progol inference system,
and we took the results of manual experiments. When necessary, we
also added random noise by flipping the observation of growth to
no-growth and the reverse. We compared differing types of experi-
ment (single metabolites or double metabolites), numbers of
iterations, noise, and noise reduction strategies. In Fig. 3c, d we
show the results for 0% and 25% experimental noise, plotting
accuracy against time and accuracy against price. In these typical
experiments, the ASE strategy almost completely dominates those
of Naive and Random. These simulation experiments are consistent
with the results in vivo, because we estimate that the physical system
has about 25% noise in the observations of whether growth
occurred or not. The high level of noise is due to the robot’s
being open to the air (and therefore to microbial contamination).
We were also interested to compare the performance of the Robot
Scientist system with that of humans. To do this, we adapted the
simulator to allow humans to choose and interpret the result of
cycles of experimentation. In initial trials, using nine graduate
computer scientists and biologists, we found that there was no
significant difference between the robot and the best human
performance in terms of the number of iterations required to

achieve a given level of accuracy.
The inference of gene function in the AAA pathway was selected

to be typical of scientific inference tasks in molecular genetics. We
argue that most molecular genetics differs from this model only in
the much greater sophistication of the abductive process used to
select a possible hypothesis and by the far greater elegance of the
experiments used to discriminate among hypotheses. Although the
AAA problem is relatively simple, it could still be applied directly to
‘real-world’ problems. For instance, if a series of AAA metabolism
mutants from a related (but genetically uncharacterized) fungal
species had been isolated, the S. cerevisiae AAA pathway could be
used to guide auxotrophic growth experiments in exactly the same
way as described here.

Although pioneering work by others (see ref. 22, for example) has
developed automated systems to induce genetic networks from
mutant data, we believe that the Robot Scientist is the first example
of a closed-loop system that actually designs and executes experi-
ments to test inferred hypotheses. Nevertheless, the Robot Scientist
has currently only been demonstrated to rediscover the role of genes
of known function; this initial step was essential to ensure that the
system was working. We now plan to extend the system to be able
to uncover the function of genes whose role is currently unknown.
To enable this, the background cellular metabolism model will need
to be extended. This will involve the translation of bioinformatic
databases such as KEGG into our logical formalism; the resultant
models are likely to be less reliable than that of our carefully checked
AAA model. The abductive hypothesis generation method will also
need to be extended to allow the inference of missing arcs, not just
their binding. Initial work has been done on this12.

The general robot scientist idea could be applied to many
scientific problems, and we are actively investigating drug design

Figure 3 Actual and simulated performance of the Robot Scientist. a, b, Actual

performance. a, Plot of average classification accuracy against experimental iteration

(from four experimental repeats). b, Plot of average classification accuracy against

average experimental scaled price (from four experimental repeats). c, d, Simulated

performance. c, Plot of average classification accuracy against time for 0% noise

(squares) and 25% noise (diamonds) (based on 100 simulation runs). d, Plot of average

classification accuracy against average scaled price for 0% noise (squares) and 25%

noise (diamonds) (based on 100 simulation runs). Strategies: red curves, ASE; blue

curves, Random; green curves, Naive.
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and quantum control. To apply the Robot Scientist to drug design,
the robot would need to be able to perform a biological assay to
perform the given optimization, and either synthesize compounds
of required structure using lab-on-a-chip technology or choose
them from a large library. The hypotheses would be different
qualitative structure–activity relationships. The quantum control
of chemical synthesis with femtosecond lasers24 is especially
challenging because of the ability and desirability of doing experi-
ments very quickly (about 103 per second at present). At such
speeds, human intervention is impossible, and automatic systems
become essential.

The Robot Scientist extends the state of the art in integrating
scientific discovery software with laboratory robotics. Moreover, the
application of the Robot Scientist to functional genomics provides
further evidence that some aspects of scientific reasoning can be
formalized and efficiently automated. In science, experiment selec-
tion is generally done informally and without explicit regard to the
cost of eliminating hypotheses; when formal experimental design25

is employed, this is generally done to ensure that sufficient repeats
and controls are in place to answer the desired question. Our results
show that different experiment selection strategies can have signifi-
cantly different results in terms of cost, even for the solution of a
simple problem. This suggests that there remains scope to improve
the general cost-effectiveness of science by developing better tools to
help choose efficient experiments.

Automation was the driving force of much of nineteenth-century
and twentieth-century change, and this is likely to continue. It is
also becoming increasingly important in scientific research: for
example, the sequencing of the human genome was made possible
by factory production techniques, and modern drug discovery relies
on high-throughput screening robots. We consider this trend to
increased automation of science to be both inevitable and desirable.
It is inevitable because it will be required to deal with the challenges
of science in the twenty-first century. It is also desirable because it
frees scientists to make the high-level creative leaps at which they
excel. A

Methods
Growth experiments and the amino acid pathway
The mutants (of Saccharomyces cerevisiae strain BY4741 (ATCC201388) MATa his3D1
leu2D0 met15D0 ura3D0; ref. 26) had the complete reading frame of each protein-
encoding gene deleted by replacement with a selectable marker gene that had no
phenotype in the absence of the selective agent27. They were therefore non-revertible null
mutants. Limitations in the availability of mutant yeast strains restricted the number of
genes used in the in vivo investigations to 15, and the auxotrophic experimental
requirement for a difference in growth phenotype reduced this number to the following 8
(the other mutants always either grew or failed to grow): ybr166c, ydr007w, ydr035w,
ydr354w, yer090w, ygl026c, ykl211c and ynl316c. The number of possible metabolites
was limited to nine by availability and cost: anthranilate (10), indole (190),
p-hydroxyphenolpyruvic acid (193), L-phenylalanine (53), phenylpyruvate (30),
phosphoenolpyruvate (9385), shikimic acid (633), L-tyrosine (53) and L-tryptophan (53).
The numbers in parentheses are the normalized true experimental costs of using each
metabolite in a growth medium; note the approximate three orders of magnitude range.

Computational model of the aromatic amino acid pathway
The Prolog model of the pathway was refined in three stages. First, the original model was
translated from KEGG13 and carefully checked with the literature. We checked that all the
KEGG reactions were documented in S. cerevisiae (consistency) and that there were no
other related reactions described in the literature (completeness). Second, the predictions
of the model were compared with the results of the single-metabolite experiments (see
above). Whether growth or lack of growth was observed was at this point decided visually.
Because certain metabolites did not seem to affect growth in the way predicted by the
literature, we refined the model to make these metabolites unable to be imported into the
cells efficiently. It was also necessary to add inhibition effects (see Supplementary
Information for details). Last, the results of the double-metabolite experiments were tested
against the model, and the automatic growth-calling software was optimized by learning a
decision tree to fit the experimental results to the model (see Supplementary section 2).
The model developed on the single metabolites was consistent with all except less than
1.5% of the double-metabolite experiments. The model was not further changed to
include these experimental discrepancies.

Performance measures
The average performance of the hypotheses is an appropriate performance measure

because it rewards learners that discriminate between competing hypotheses. This
approach is a compromise between selecting the hypothesis with the highest probability
and weighting all predictions by the probability of the hypotheses that generated them. In
active learning, the performance curves that have been generally used plot predictive
accuracy against the number of training examples. Often, two curves are plotted on the
same graph, one for active learning and one for random sampling. The accuracy of a single
hypothesis is the number of correct predictions that this hypothesis makes about all
possible single-metabolite and double-metabolite experiments, based on using the model
as the oracle.

Such performance plots allow the difference in the number of experiments (examples
per unit time) required to reach a particular level of performance to be compared.
However, one drawback of such plots is that they ignore any variation in the price of
obtaining individual examples. When such variation does exist, and the aim is to compare
the price of attaining particular levels of performance, these plots are potentially
misleading. To overcome this drawback we also plot the cumulative price of the
experiments against performance20. For this we use the normalized price of the metabolite.
At the start of the experiments, when there are eight possible hypotheses, the average
accuracy is 57%.

Structure of the Robot Scientist
The Robot Scientist automates the task of liquid handling and can conduct assays by
pipetting and mixing liquids on microtitre plates. The robot is controlled using Tcl (Tool
Command Language), and we have written a compiler that translates Prolog commands
into Tcl robot operations. Given a Prolog definition of one or more experiments, we have
developed code that designs a layout of the robot that will allow these experiments, with
controls, to be performed efficiently. In addition, the robot has to be automatically
programmed to plate out the yeast and media into the correct wells. The microtitre plates
were measured with the adjacent plate reader and the results were returned to the LIMS.
Transfer of plates from the robot to the incubator, and from the incubator to the plate
reader, was done manually.
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Cytotoxic T lymphocytes (CTLs) detect and destroy cells display-
ing class I molecules of the major histocompatibility complex
(MHC) that present oligopeptides derived from aberrant self or
foreign proteins. Most class I peptide ligands are created from
proteins that are degraded by proteasomes and transported, by
the transporter associated with antigen processing, from the

cytosol into the endoplasmic reticulum, where peptides bind
MHC class I molecules and are conveyed to the cell surface1. C2
CTLs, cloned from human CTLs infiltrating a renal cell carci-
noma, kill cancer cells overexpressing fibroblast growth factor-5
(FGF-5)2. Here we show that C2 cells recognize human leukocyte
antigen-A3 MHC class I molecules presenting a nine-residue
FGF-5 peptide generated by protein splicing. This process,
previously described strictly in plants3 and unicellular organ-
isms4, entails post-translational excision of a polypeptide seg-
ment followed by ligation of the newly liberated carboxy-
terminal and amino-terminal residues. The occurrence of protein
splicing in vertebrates has important implications for the com-
plexity of the vertebrate proteome and for the immune recog-
nition of self and foreign peptides.

To identify the FGF-5-derived epitope recognized by C2, we
transfected human leukocyte antigen (HLA)-A3-expressing COS-7
cells (COS-A3) with expression plasmids encoding truncated forms
of the FGF-5 gene and measured C2 activation by its release of
interferon-g (IFN-g) (Fig. 1a). Antigenicity was lost by truncation
either between predicted amino acid residues 212 and 220 (G4/G5
plasmids) or residues 161 and 172 (G8/G9 plasmids) of FGF-5. The
shortest stimulatory fragment identified (G8) encoded 60 amino
acids (residues 161–220).

We next examined the antigenicity of synthetic peptides corre-
sponding to all of the 8-residue, 9-residue and 10-residue peptides
contained within the defined 60 amino-acid fragment, but none
were recognized by C2 when incubated with APCs expressing HLA-
A3 (data not shown). We similarly tested peptides encoded by the
þ1 and þ2 reading frames of the fragment but did not find the
epitope (data not shown). Post-translational structural modifi-
cation of a minimal determinant within the 60 amino-acid fragment
remained a possible explanation for our failure to identify a

Figure 1 Genetic truncation analysis of the FGF-5-encoded determinant. a, A series of

truncation mutants (G2–G9) were prepared by PCR from construct G1. An initiation codon

and the Kozak consensus (CACCATG) were introduced into the PCR primers for constructs

G6–G9. Each PCR product was cloned into the eukaryotic expression vector and

transfected into COS-A3 cells; recognition by C2 was assessed by IFN-g secretion.

Nucleic acid positions are indicated above the start and finish of each construct and the

corresponding amino acid positions from FGF-5 below. Constructs shown as open boxes

were recognized; those shown as filled boxes were not. b, Analysis of internal deletion

mutants. For simplicity, predicted amino acid sequences instead of DNA sequences are

shown. The antigenicity of each construct was assessed as described in a. All constructs

were designed to start with the Kozak consensus sequence and end with the termination

codon TAA. Numbers in parentheses indicate the position of the first and the last amino

acids. Numbers after D indicate internally deleted amino acid residues. The degree of CTL

recognition is categorized as follows depending on IFN-g secretion: (þþ), more than

1,000 pg ml21; (þ), 200–1,000 pg ml21; (þ/2), 100–200 pg ml21; (2), less than

100 pg ml21.
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