
molecular MTI markers was abolished in the fls2
mutant, which lacks the PRR receptor for flg22
peptide, and largely impaired in pfd6-1 (fig. S13).
These results link PFD6 to MTI downstream of
FLS2 PRR receptor function (10, 33). Collect-
ively, these results (Fig. 4) validate the biological
significance of PPIN-1 and confirm that patho-
gen effectors target host proteins that are required
for effective defense or pathogen fitness. To facil-
itate further hypothesis testing, we present the lo-
cal networks for the five significantly targeted
hubs (Fig. 2D and table S4) and point out con-
nections to cellular functions potentially relevant
to immune system function (figs. S14 to S18).

Conclusions. Our analyses reveal that oomycete
and bacterial effectors separated by ~2 billion
years of evolution target an overlapping subset of
plant proteins that include well-connected cel-
lular hubs. Our functional validation supports the
notion that effectors are likely to converge onto
interconnected host machinery to suppress effec-
tive host defense and to facilitate pathogen fitness.
We predict that many of the 165 effector targets
we defined will also be targets of additional, in-
dependently evolved effectors from other plant
pathogens. We anticipate that effectors that target
highly connected cellular proteins fine-tune cel-
lular networks to increase pathogen fitness and
that evolutionary forces integrate appropriate
immune responses with those perturbations. As
proposed in the guard hypothesis, our data are
consistent with indirect connections between path-
ogen effectors and NB-LRR immune receptors,
at least for the NB-LRR fragments represented
in PPIN-1. The high degree of the effector targets
argues against a decoy role for these proteins. Al-
though the concept of cellular decoys evolved to
intercept pathogen effectors is attractive, and likely
true in one case in the plant immune system (3),
these are expected to have few, if any, additional
cellular functions and, as such, would likely have
fewer interaction partners in the protein interaction
network. Most of the 673 immune interactors have
no previously described immune-system function.
Our results bridge plant immunology, which pre-
dicted that effectors should target common proteins,
and network science, which proposes that hubs
should be targets for networkmanipulation (25–28).
Derivation of general rules regarding the organiza-
tion and function of host cellularmachinery required
for effective defense against microbial infection,
as well as detailed mechanistic understanding of
how pathogen effectorsmanipulate thesemachines
to increase their fitness, will facilitate improvement
of plant immune system function.
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Evidence for Network Evolution
in an Arabidopsis Interactome Map
Arabidopsis Interactome Mapping Consortium*†

Plants have unique features that evolved in response to their environments and ecosystems. A full
account of the complex cellular networks that underlie plant-specific functions is still missing. We
describe a proteome-wide binary protein-protein interaction map for the interactome network of
the plant Arabidopsis thaliana containing about 6200 highly reliable interactions between about
2700 proteins. A global organization of plant biological processes emerges from community
analyses of the resulting network, together with large numbers of novel hypothetical functional
links between proteins and pathways. We observe a dynamic rewiring of interactions following
gene duplication events, providing evidence for a model of evolution acting upon interactome
networks. This and future plant interactome maps should facilitate systems approaches to better
understand plant biology and improve crops.

Classical genetic and molecular approaches
have provided fundamental understand-
ing of processes such as growth control

or development and molecular descriptions of
genotype-to-phenotype relationships for a varie-

ty of plant systems. Yet, more than 60% of the
protein-coding genes of the model plant Arabi-
dopsis thaliana (hereafter Arabidopsis) remain
functionally uncharacterized. Knowledge about
the biological organization of macromolecules in
complex and dynamic “interactome” networks
is lacking for Arabidopsis (fig. S1 and tables S1
and S2), depriving us of an understanding of how
genotype-to-phenotype relationships are medi-
ated at the systems level (1).

*All authors with their affiliations and contributions are
listed at the end of the paper.
†To whom correspondence should be addressed. E-mail:
marc_vidal@dfci.harvard.edu; ecker@salk.edu; pascal_braun@
dfci.harvard.edu; david_hill@dfci.harvard.edu
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A high-quality binary protein-protein in-
teractome map for Arabidopsis. To generate a
map of the Arabidopsis interactome network, we
used a collection of ~8000 open reading frames
representing ~30% of its predicted protein-coding
genes (fig. S2 and table S3) (2, 3). We tested all
pairwise combinations of proteins encoded by
these constructs (space 1) with an improved high-
throughput binary interactome mapping pipeline
based on the yeast two-hybrid (Y2H) system (fig.
S2) (3, 4). Confirmed pairs were assembled into
a data set of 5664 binary interactions between
2661 proteins, called Arabidopsis Interactome
version 1 “main screen” (AI-1MAIN) (table S4).

The quality of AI-1MAIN was evaluated
against a positive reference set (PRS) of 118
well-documented, manually recurated (5) Ara-
bidopsis protein-protein interactions and a ran-
dom reference set (RRS) of 146 random protein
pairs (fig. S3 and table S5) (3, 5–9). We deter-
mined the fraction of true biophysical inter-
actions in AI-1MAIN, its precision, to be ~80%,

by comparing the validation rates of a random
sample of 249 interactions from AI-1MAIN to those
of the PRS and RRS in a well–nucleic acid pro-
grammable protein array (wNAPPA) protein-
protein interaction assay (Fig. 1A, fig. S4, and
table S5) (3, 8).

To estimate the size of the complete Arabi-
dopsis protein-protein interactome network and
the proportion covered by AI-1MAIN, its coverage,
we calculated the screening completeness, the
percentage of all possible Arabidopsis pairwise
protein combinations screened in space 1 (~10%)
(fig. S2), and the overall sensitivity (16%), a pa-
rameter that combines both the assay sensitiv-
ity of our Y2H version (Fig. 1A and table S5) and
the sampling sensitivity of our screens (fig. S5 and
table S6) (3, 6, 7, 9). Because AI-1MAIN contains
5664 interactions, we estimate that the complete
Arabidopsis biophysical binary protein-protein
interactome, excluding isoforms, is 299,000 T
79,000 binary interactions (mean T SD) (3), of
which AI-1MAIN represents ~2%. Although the

Arabidopsis interactome is estimated to be larger
than those of yeast, worm, or human (6, 7, 9), the
number of interactions per possible protein pairs
is similar in all four species (5 to 10 per 10,000).
The overall topology of AI-1MAIN is qualitative-
ly similar to that observed for interactome maps
of these other species (fig. S6) (6, 7, 9, 10). All
global network analyses were performed with
AI-1MAIN, whereas local analyses were derived
from a slightly larger data set, AI-1, obtained by
combiningAI-1MAINpairswith interactions iden-
tified in repeated screens performed to estimate
sampling sensitivity (fig. S2 and tables S4, S6,
and S7) (3).

Comparing AI-1MAIN to a network of Arabi-
dopsis literature-curated interactions. We assem-
bled 4252 literature-curated binary interactions
between 2160 Arabidopsis proteins (LCIBINARY)
(fig. S1 and tables S1 and S4) (3). The observed
overlap with AI-1MAIN lies within the range ex-
pected given the AI-1MAIN coverage (Fig. 1B)
(3). With similar numbers of proteins (nodes)
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and interactions (edges), AI-1MAIN and LCIBINARY
are both small-world networks (fig. S6). How-
ever, LCIBINARY shows longer distances between
nodes and a higher tendency to form clusters of
highly interacting nodes (Fig. 1B and fig. S6).
This is likely due to biases inherent to literature-
curated data sets, because hypothesis-driven re-
search focuses on a few proteins designated to be
important (5–7, 9–11). AI-1MAIN and LCIBINARY
contain similar fractions of plant-specific pro-
teins (19% and 14%, respectively) (fig. S6 and
table S8) (3), but the presence of several highly
connected plant-specific hubs in AI-1MAIN results
in twice as many plant-specific interactions (40%
and 20%) (fig. S6 and table S9).

Overlap of AI-1 with other biological rela-
tionships. To estimate the overall biological rel-

evance of AI-1 interactions, we used statistical
correlations with genome-wide functional in-
formation available for Arabidopsis (7, 9). We
observed a significantly higher coexpression cor-
relation for pairs of transcripts encoding inter-
acting proteins than for control pairs (fig. S7)
(3). Interacting proteins are also enriched in com-
mon gene ontology (GO) annotations, particular-
ly those describing specific biological functions
and thus assigned to only a few proteins, which
we refer to as “precise” annotations (fig. S7) (3).
This enrichment holds true for GO annotations
based strictly on genetic experiments (fig. S7)
(3). Protein pairs that do not directly interact but
share interactors are also enriched in common
precise GO annotations (fig. S7) (3). Similar to
the whole Arabidopsis proteome, but in contrast

to proteins involved in literature-curated interac-
tions, two-thirds of proteins in AI-1 lack any or
precise GO annotations; for these, AI-1 pro-
vides starting points for hypothesis develop-
ment (fig. S7 and tables S8 and S9).

Plant signaling networks in AI-1. Integra-
tion of biophysical interactions with orthogonal
functional data can uncover novel biological
relationships at the scale of individual proteins,
pathways, and networks (1). We examined
ubiquitination enzymes and their substrates, an
expanded system in plants relative to other species
(12). The specific targets of most ubiquitination
enzymes remain elusive, and a systems level un-
derstanding of ubiquitin signaling is missing.
We identified 32 interactions between E3 pro-
teins and potential target proteins shown to be
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ubiquitinated in biochemical experiments (tables
S8 and S9) (3). Many E3 proteins showed inter-
actions with the same putative target and, con-
versely, several putative targets interacted with a
single common E3 (Fig. 2A) (3). Thus, our data
support a high combinatorial complexity with-
in the ubiquitination system and, with similar
analyses of phosphorylation signaling cascades
(fig. S8 and tables S8 and S9) (3), provide start-
ing points for analysis of directional informa-
tion flow through protein-protein interactome
networks.

Plant hormones regulate developmental pro-
cesses and mediate responses to environmen-
tal stimuli. In the auxin signaling pathway, auxin/
indole-3-acetic acid (AUX/IAA) proteins mediate
transcriptional repression of response genes through
physical interactions between their ethylene-
response-factor–associated amphiphilic repression
(EAR) motifs and the co-repressor TOPLESS (TPL)
(13). Twelve interactions between AUX/IAAs and
TPL or TPL-related 3 (TPR3) were observed in
AI-1, including six novel ones (fig. S8). Where-
as two non-AUX/IAA interactors of TPL have
been reported so far (14, 15), there are 21 such
interactors in AI-1, of which 15 contain a pre-
dicted EAR motif (16) (P < 10−24, hypergeomet-
ric test). TPL interactors include ZIM-domain
transcriptional repressors (JAZ5 and JAZ8), reg-
ulators of salicylic acid signaling (NIMIN2
and NIMIN3), and a transcriptional regulator
of ethylene response (ERF9) (Fig. 2B and fig.
S8). AI-1 also reveals direct interactions among
repressors, similar to the recently described cross-
talk between JAZ proteins and gibberellin-related
DELLA proteins (17), as well as shared transcrip-
tion factor targets of JAZ and jasmonic acid–
insensitive ZIM-related family members (Fig.
2B and fig. S8). These observations suggest that
transcriptional co-repressors and adaptors assem-
ble in a modular way to integrate simultaneous
inputs from several hormone pathways and that
TPL plays a central role in this process.

Communities in AI-1MAIN. In many networks,
communities can be identified as densely in-
terconnected components that function together
(18). We applied an edge-clustering approach
(19) to identify communities in AI-1MAIN and in-
vestigated their biological relevance. We identi-
fied 26 communities containing more than five
proteins in AI-1MAIN (Fig. 3 and fig. S9) (3).
About 25% of AI-1MAIN proteins (661 of 2661)
could be assigned to one community, whereas
~1% (23 of 2661) belong to more than one com-
munity. We found that ~90% of these communi-
ties are enriched in at least one GO annotation
(Fig. 3 and table S10) (3), whereas negative con-
trol networks randomized by degree-preserving
edge shuffling showed fewer communities and
little GO annotation enrichment (P < 0.01, em-
pirical P value) (Fig. 3). Detailed inspection of
AI-1MAIN communities (figs. S10 to S35) both
recapitulated available biological information
and suggested new hypotheses. For example, the
brassinosteroid signaling/phosphoprotein-binding

community contains several 14-3-3 proteins known
to regulate brassinosteroid signaling (fig. S10).
Consistent with the tendency of 14-3-3 proteins
to interact with phosphorylated partners (20), this
community is enriched in experimentally identified
phosphoproteins (P = 0.005, Fisher’s exact test).
The interactions between the 14-3-3 proteins
and the abscisic acid–responsive element binding
transcription factor AREB3 are corroborated by

previous findings in barley (21) and suggest that
plant 14-3-3 proteins mediate multiple hormone
signaling pathways.

Several communities, such as transcription/
gene expression and nucleosome assembly, share
proteins indicating linked biological processes
(fig. S36). Particularly striking is the large trans-
membrane transport community sharing 13 pro-
teins with the vesicle trafficking community
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and six with the water transport community
(fig. S36). These shared proteins are bridged by
four well-connected proteins within the trans-
membrane transport community, including two
membrane-tethered NAC-type transcription fac-
tors, ANAC089 and NTL9 (fig. S36). Transcrip-
tion factors in this plant-specific protein family
are activated by release from the cellular mem-
brane by endopeptidase- or ubiquitin-mediated
cleavage (22). Interactions corresponding to both
mechanisms are found in the transmembrane trans-
port community (fig. S37).

Four distinct communities correspond to
ubiquitination. The largest is predominantly com-
posed of interactions between 36 F-box proteins
and two Skp proteins, known to form degrada-
tive SCF (Skp1, Cullin, F-box) ubiquitin ligase
complexes (fig. S27). Two others are composed
of shared E2 ubiquitin conjugating enzymes and
distinct RING-finger family E3 ligases (figs.
S12 and S16). The ubiquitination and DNA repair
community includes the UBC13 and MMS2/UEV
E2 ubiquitin conjugating enzymes, which partic-
ipate in nonproteolytic polyubiquitination (fig.
S13) (23). Distinct types of ubiquitin-related pro-
cesses were thus identified in AI-1.

Our analyses support the relevance of com-
munities identified in AI-1MAIN, and we antici-
pate that, with increasing coverage, interactome
network maps will improve understanding of the
systems-level organization of plants.

Evidence for network evolution. Whether
or not natural selection shapes the evolution of
interactome networks remains unclear. Gene
duplication, a major driving force of evolution-
ary novelty, has been studied in yeast, provid-
ing a framework for understanding subsequent
protein-protein interaction rewiring (Fig. 4A)
(24). However, the difficulty in dating ancient
gene duplication events and the low coverage of
available protein-protein interaction data sets lim-
it the interpretation of these studies (3, 24–27).
The high fraction of duplicated genes in the Ara-
bidopsis genome compared with nonplant spe-
cies, combined with the relatively large size of
AI-1MAIN, provides interactome data for 1882
paralogous pairs (fig. S38). These pairs span a
wide range of apparent interaction rewiring, as
measured by the fraction of shared interactors for
each pair (fig. S38).

To verify that the apparent interaction rewir-
ing in AI-1MAIN reflects functional divergence,

we focused on paralogous pairs classified as
having no, low, or high functional divergence
on the basis of morphological consequences
observed in functionally null mutants of single
or pairs of paralogous genes (28). For the 17
pairs in AI-1MAIN for which comparative pheno-
typic data are available, the fraction of shared
interactors accurately predicted this functional
divergence classification (Fig. 4B).

To study the dynamics of interaction rewir-
ing, we dated gene duplication events using a
comparative genomics approach that brackets
these events on the basis of multitaxonomic
phylogenetic trees (3). This allowed us to divide
AI-1MAIN paralogous pairs into four time-since-
duplication age groups covering up to ~700 mil-
lion years (fig. S39). To account for the illusion
of divergence induced by low experimental cov-
erage, we empirically determined the average
fraction of common interactors detected for a
set of proteins screened twice, as performed for
AI-1MAIN (fig. S40) (3). We used this expected
upper bound to calibrate the fraction of observed
shared interactors between paralogous proteins,
assuming that duplicates are identical at the time
of duplication (Fig. 4C) (3). Our observations

Fig. 4. Evidence for network evolution in AI-1MAIN. (A) Interaction rewiring
over time, according to the duplication-divergence model (24). (B) Average
fraction of interactors shared between pairs of paralogous proteins with no
(n = 4), low (n = 10), and high (n = 3) functional divergence (28). Error
bars, mean T SEM. P value, one-sided Kendall ranking correlation test (t,
association) (3). (C) Average fraction of shared interactors, corrected for low
experimental coverage (3), and average protein sequence identity between
pairs of paralogous proteins as a function of the estimated time elapsed
since duplication. Error bars, mean T SEM (3). Dashed black line, corrected

average fraction of shared interactors of nonparalogous pairs; myrs, million
years. (D) Corrected average fraction of shared interactors (3) for pairs of
paralogous proteins originating from polyploidy events (n = 109), as com-
pared with other paralogous protein pairs of similar age (n = 147). Error bars,
mean T SEM (3). P values, Mann-Whitney U test. (E) Corrected average frac-
tion of shared interactors (3) for pairs of paralogous proteins encoded by gene
pairs with high or low coexpression correlation (top and bottom tertile, respec-
tively) as a function of phylogeny-based age group. Error bars, mean T SEM
(3). *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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are not driven by the existence of certain large
protein families in AI-1MAIN (fig. S41). As re-
ported for yeast (24, 26, 27), the average fraction
of common interactors decreases over evolution-
ary time, showing substantial and rapid diver-
gence, even after correcting for the coverage of
AI-1MAIN. Yet, in Arabidopsis, paralogous pairs
that have been diverging for ~700 million years
still share more interactors than random protein
pairs (P < 2.2 × 10−16, Mann-Whitney U-test),
indicating that the long-term fate of paralogous
proteins is not necessarily a complete divergence
of their interaction profiles.

The proportion of shared interactors does not
decay exponentially with time-since-duplication,
as expected when assuming neutral evolution
(3, 29, 30), that is, random interaction rewiring
with no impact on fitness (31). Instead, the rate
of rewiring appears to be “rapid-then-slow,” as
suggested by a better fit to a power-law decay
(Fig. 4C and fig. S42) (3). This trend mirrors
that of protein sequence divergence for these
paralogous pairs (Fig. 4C), which reflects the
variation of selective pressure at different times
after the duplication event. After an initial tran-
sient relaxation leading to rapid protein sequence
divergence, selective pressure tightens on re-
tained paralogs and their divergence decelerates
(3, 25) (fig. S39). The fact that interactions di-
verge in a time-dependent manner similar to
protein sequences supports the hypothesis that
protein-protein interactions drive the evolution
of duplicated genes.

To investigate the interplay between duplica-
tion mechanism and the fate of duplicates (32),
we compared duplicates originating from whole-
genome duplications (WGDs) to those from
other types of gene duplications. In our most re-
cent age group containing paralogs specific to
the Arabidopsis genus, 109 paralogous pairs
arose during the two most recent WGDs in the
Arabidopsis lineage (a and b WGDs) (3, 33).
As previously observed for yeast (34), these pairs
share more interactors than other paralogous
pairs in the same age group (Fig. 4D and fig. S43),
but this effect could simply reflect the younger
age of WGD pairs as revealed by more precise
time estimates (fig. S43). Although gene dosage
balance has been proposed to determine loss or
retention of duplicates after WGDs (33), the ob-
served extensive rewiring reinforces previous ob-
servations pointing to functional divergence as
a major feature of the long-term evolution of
polyploid plants (35).

Expression profile divergence is rapid, non-
random, and substantial in Arabidopsis (36, 37)
(fig. S44), yet appears to play a limited role in
the functional divergence of paralogs (28). We
tested whether the evolutionary forces acting on
expression profiles and protein interaction diver-
gence are complementary or correlated. For each
duplication age group, the most coexpressed
paralogous pairs tend to share more interactors
than the least coexpressed ones (Fig. 4E). This
suggests that selective pressures driving func-

tional divergence concurrently act on both as-
pects of protein function.

With >65% sequence identity and strongly
correlated expression profiles, the most recent
paralogous pairs share less than half of their
interactors (41%) (Fig. 4C and figs. S44 and
S45). This contrast is consistent with the com-
mon understanding that protein-protein interac-
tions are only one of many constraints limiting
sequence changes during evolution, allowing for
small sequence changes to induce fate-determining
network rewiring (38, 39). One example of in-
teraction rewiring despite sequence conservation
is observed in the actin family. Each actin pro-
tein pair shares >90% sequence identity, yet col-
lectively the actin family exhibits time-dependent
interaction rewiring (fig. S45).

Modeling interaction rewiring with non-
constant rates should provide insight into the
evolution of interactome networks and their to-
pology (40). Whether this rewiring is merely a
consequence of sequence divergence or is a pri-
mary driver remains an open question. Together
with observations of fast rewiring of other types
of biological networks (41, 42), our data invite
speculation that edge-specific rewiring is faster
than node evolution in biological networks.

Conclusion. Our empirically determined high-
quality protein-protein interaction map for a plant
interactome network should not only hasten the
functional characterization of unknown proteins,
including those with potential biotechnological
utility, but also enable systems level investiga-
tions of genotype-to-phenotype relationships in
the plant kingdom. One example is how AI-1
illuminates mechanisms and strategies by which
plants cope with pathogenic challenges (43).

The paradigms established here are compat-
ible with models in which the interactome net-
work constrains and shapes sequence evolution.
Studying sequence variation, conservation, mu-
tation, and evolution rate has shed light on how
natural selection drives evolution. Explorations
of interaction variation will similarly broaden the
understanding of network evolution, whether in
the context of duplication or trans-kingdom com-
parative interactomics.
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Friction Anisotropy–Driven
Domain Imaging on Exfoliated
Monolayer Graphene
Jin Sik Choi,1 Jin-Soo Kim,1 Ik-Su Byun,1 Duk Hyun Lee,1 Mi Jung Lee,1 Bae Ho Park,1*
Changgu Lee,2 Duhee Yoon,3 Hyeonsik Cheong,3 Ki Ho Lee,4 Young-Woo Son,4

Jeong Young Park,5* Miquel Salmeron6

Graphene produced by exfoliation has not been able to provide an ideal graphene with
performance comparable to that predicted by theory, and structural and/or electronic defects
have been proposed as one cause of reduced performance. We report the observation of domains
on exfoliated monolayer graphene that differ by their friction characteristics, as measured by
friction force microscopy. Angle-dependent scanning revealed friction anisotropy with a periodicity
of 180° on each friction domain. The friction anisotropy decreased as the applied load
increased. We propose that the domains arise from ripple distortions that give rise to anisotropic
friction in each domain as a result of the anisotropic puckering of the graphene.

Themechanical exfoliation method to trans-
fer a monolayer of graphene to a substrate
is thought to be a facile method to obtain

a single crystalline graphene (1). Mechanical
exfoliation, however, may induce strain on the
graphene layer during deposition on a substrate
and can create wrinkled films and other defects,
because the interaction with the substrate might
introduce uneven compressive and tensile stresses
that are nonuniformly distributed across the film.
Structural defects such as atomic defects (2), wrin-

kles or ripples (3–5), and microscopic corruga-
tion (6) have already been reported on supported
graphene. These defects tend to lower the elec-
trical performance of graphene devices because
they break translational or rotational symmetry.
In addition, the boundaries of microscale domains
also break the symmetry, as reported for graphene
grown by chemical vapor deposition (7). How-
ever, no experimental observations of microscale
domains on mechanically exfoliated monolayer
graphene have been reported to date.

Atomic force microscopy (AFM) can be used
to study the mechanical properties of surfaces be-
cause it provides local information about hard-
ness, deformation, slipperiness, and chemical
state. Friction force microscopy (FFM) has been
used to investigate elastic deformation, atomic
structure, dislocation, and defects (8, 9). Recent
studies show that friction depends on the num-
ber of graphene layers as well as the nature of the
graphene-substrate bond (10–12). Puckering in-
duced by AFM tip scanning has been proposed
as the origin of the thickness effects on friction
(10). Here, we show the existence of domains on
exfoliated monolayers of graphene deposited on
silicon oxide that are distinguished by their dif-
ferent friction characteristics when an AFM tip
slides over them. These domains cannot be ob-
served in AFM topographic images, optical mi-
croscopy, or micro-Raman spectroscopy.
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