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We compare several commonly used expression-based gene clustering algorithms using a figure of merit based
on the mutual information between cluster membership and known gene attributes. By studying various
publicly available expression data sets we conclude that enrichment of clusters for biological function is, in
general, highest at rather low cluster numbers. As a measure of dissimilarity between the expression patterns of
two genes, no method outperforms Euclidean distance for ratio-based measurements, or Pearson distance for
non-ratio-based measurements at the optimal choice of cluster number. We show the self-organized-map
approach to be best for both measurement types at higher numbers of clusters. Clusters of genes derived from
single- and average-linkage hierarchical clustering tend to produce worse-than-random results.

[The algorithm described is available at http://llama.med.harvard.edu, under Software.]

The widespread use of DNA microarray technology (Eisen and
Brown 1999) to perform experiments on thousands of gene
fragments in parallel has led to an explosion of expression
data. To handle such huge amounts of data on entities whose
interrelationships are poorly understood, exploratory analysis
and visualization techniques are essential (DeRisi et al. 1997;
Michaels et al. 1998; Wen et al. 1998). Clustering (the assign-
ment of each of a large number of items to one of a much
smaller number of classes) is one widely used technique. The
science of clustering has long been under development
(Everitt 1980), and there are many techniques. Hierarchical
clustering (encompassing single-, complete-, and average-
linkage variants), k-means clustering, and self-organized maps
(SOM) are the most widely used in analysis of gene-expression
data (for reviews, see Gerstein and Jansen 2000; Quackenbush
2001). In addition to these long-established algorithms, new
ones have been developed specifically for analysis of gene-
expression data (Getz et al. 2000; Lazzeroni and Owen 2000;
Shamir and Sharan 2000; Ben-Hur et al. 2002; Sinkkonen and
Kaski 2002). The availability of free software tools (Angelo
1999; Eisen 1999) implementing the hierarchical and SOM
algorithms has made them very easy to apply, often to good
scientific and visual effect (Eisen et al. 1998; Golub et al. 1999;
Tamayo et al. 1999; Gasch et al. 2000).

An underlying assumption is that by clustering genes
based on similarity of their expression patterns in a limited set
of experiments, we can establish guilt by association—that is,
genes with similar expression patterns are more likely to have
similar biological function. Clustering does not provide proof
of this relationship, but it does provide suggestions that help
to direct further research. It is clear that clustering by expres-
sion pattern does not provide the best possible grouping of
genes by biological function. It is easy to construct examples
in which genes known to share similar functions end up in
different clusters, particularly when they relate to molecular
function or catalytic activity rather than to cellular role or

pathway. However, as long as clustering by expression pattern
is used as a means to group by putative biological function, it
is meaningful to ask which method performs best. With this
goal in mind, how might we compare two clustering results
derived from the same expression data set? Different cluster-
ing results might be obtained from different clustering algo-
rithms, or from different choices within a clustering algo-
rithm. The latter choices might include algorithm parameters
(e.g., number of clusters), the method of calculating distance
between two gene expression vectors (e.g., Euclidean or Pear-
son correlation), or different ways of preprocessing data (e.g.,
the log transformation).

We illustrate our approach of making clustering method
choices by examining the choice of cluster number. For most
methods of clustering, the user must specify the number of
clusters, and often quickly wonders, “What is the true number
of clusters?” Many data-centric techniques have been applied
to this problem, with conclusions based on which number of
clusters achieves the best balance of data point dispersion
within and between clusters, but none has proven robust
across diverse data types (Everitt 1980). Although there have
been some recent attempts to develop data-centric figures of
merit that are specific to gene expression data (Lukashin and
Fuchs 2001; Yeung et al. 2001; Ben-Hur et al. 2002), generic
(Fraley and Raftery 1998), or use information beyond the ex-
pression data itself (Jakt et al. 2001), it seems likely that there
is no single true number of clusters for gene expression data.
We should perhaps ask, “What choice of cluster number
would be most useful?”

When the objective of clustering is to bring genes of
similar function together, we assert that the best method of
clustering a particular data set is that which has the strongest
tendency to bring genes of similar function together when
applied to diverse expression data sets. With this in mind, we
should instead ask, “What choice of number of clusters gen-
erally yields the most information about gene function
(where function is known)?” For other clustering choices, we
might ask, “Which distance measure generally yields the most
information about gene function (where function is
known)?” Present annotation databases are necessarily in-
complete and evolving, but nonetheless represent the best
computable summary of our present state of knowledge.
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We propose a figure of merit based on the information
jointly held by the functional annotation and cluster mem-
bership of all the genes clustered. We apply this method to a
variety of common clustering choices. Figure 1 illustrates our
approach. An implementation of the algorithm for comput-
ing the figure of merit is accessible at http://llama.med.
harvard.edu as a CGI-based Web application, into which users
may upload their clustered data and receive a score.

RESULTS
We evaluated clustering algorithm choices based on the
premise that the best clustering algorithm for expression data
is that which tends to bring genes of similar function to-
gether, where function is known. Specifically, we investigated
choice of number of clusters, choice between various methods
of calculating dissimilarity in expression between genes (dis-
tance measures), and commonly used clustering algorithms.
Given the great variety of normalization schemes that have
been proposed, it was not feasible to include them in the
present study, but this would make an excellent topic for
further study.

Particular clustering results were evaluated by examining
the relationship between clusters produced and the known
attributes of the genes in those clusters, as annotated with a
controlled vocabulary for gene attributes. We used the Sac-
charomycesGenome Database (SGD) annotation of S. cerevisiae
genes with the gene ontology developed by the Gene Ontol-
ogy Consortium (GO; Ashburner et al. 2000; Issel-Tarver et al.
2001).

In examining choice of cluster number, we addressed
two questions: “Which clustering algorithm variants best
group genes by function using expression data?” and “Given
a clustering algorithm, is there an optimal number of clusters,
k?”, where optimality in each case is evaluated according to
existing annotation.

We devised a figure of merit, z-score, based on mutual
information between a clustering result and SGD gene anno-
tation data. The z-score indicates relationships between clus-
tering and annotation, relative to a clustering method that
randomly assigns genes to clusters. A higher z-score indicates
a clustering result that is further from random. This z-score is
plotted for clustering results as a function of number of clus-
ters, k, to compare algorithms at all choices of k, and to es-
tablish an optimal value for k. We examined all cluster num-
bers from 2 to 100.

We also compared the following distance measures on
expression data sets using k-means clustering: Euclidean,

3-norm, Manhattan or city-block, Hausdorff, and Pearson cor-
relation. The first four are special cases of a general class of
distance measures, the n-norm, defined for two d-dimensional
vectors a and b, as

Ln�a,b� ≡ �n �
i = 1

d

�ai − bi�n

Manhattan distance is the common name for the
1-norm, Euclidean distance is the common name for the
2-norm. The Hausdorff distance, in which the maximum dis-
tance along any single dimension is used as the distance be-
tween the two vectors, is the �-norm. Pearson distance is de-
fined as dP ≡ 1 � r, where r is the correlation coefficient.
Genes that are highly positively correlated are considered
similar to each other, with decreasing similarity as the corre-
lation declines and becomes negative. Euclidean and Pearson
correlation distances are common choices for clustering ex-
pression data. Some researchers report that higher n-norms
may be better at clustering vectors of higher dimensionality
(such as the 175-dimensional Gasch data set). Hausdorff dis-
tance was included as a negative control, because we did not
expect it would be a good distance.

In addition, we compared the performance of Cluster
(Eisen 1999), software that implements many clustering algo-
rithms, of which we examined only the results produced by
the hierarchical clustering, and GeneCluster (Angelo 1999),
which implements self-organized maps. To obtain a compa-
rable clustering result from hierarchical methods, genes were
partitioned into disjoint clades by cutting branches at a given
distance from the root. For SOM clustering, the user must not
only specify k, the number of clusters, but also the layout of
these clusters in a two-dimensional grid (e.g., eight clusters in
a 2 � 4 grid). For a given k, we chose the most square-like
layout, that is, that which minimizes the ratio of perimeter
length to area.

We examined four publicly available yeast data sets. Two
of these cover the well-known cell cycle data sets collected
using ratio-based (i.e., two-color cDNA) and non-ratio-based
(e.g., Affymetrix) array technologies. Two non-cell-cycle data
collections were also examined, one ratio-based and one non-
ratio-based. All data sets contain ∼ 3000 genes, after filtering
out genes with insufficient variability. These data sets are
summarized in Table 1.

The Cho data set consists of 15 time points covering two
complete cell cycles, and collected in a non-ratio format (Cho
et al. 1998). The CJRR data set is a diverse (non-cell-cycle)

collection of non-ratio-based data from
52 experiments covering YAP1/2
knockouts (Cohen et al. 2002); chemi-
cal and physical damaging agents (Je-
linsky et al. 2000); galactose response,
heat shock, and mating type (Roth et
al. 1998); and yeast A kinase TPK1/2/3
mutants (Robertson et al. 2000), all of
which were obtained through Ex-
pressDB (Aach et al. 2000). The Gasch
data set is a large collection of 175 non-
cell-cycle experiments, in ratio format
(Gasch et al. 2000). Details of these
data sets are summarized in Table 1.
The Spellman data set is a ratio-based
cell cycle time course (Spellman et al.
1998).Figure 1 Schematic of dataflow in clustering and evaluation.
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The results are shown in Figure 2. For all data sets, we
show scores for k-means clustering performed with the five
above-mentioned distance metrics (Euclidean, Pearson corre-
lation, 3-norm, Manhattan, and Hausdorff), three hierarchi-
cal clustering methods (single, complete, and average linkage,
all using the uncentered Pearson correlation distance—the de-
fault—which is similar to the centered Pearson correlation
distance, because the data have all been median-centered),
and self-organized maps (SOM). Each curve is a three-point
moving average of the original data.

In the Cho data set (Fig. 2a), the performance of single-
linkage hierarchical clustering is worse than random, and av-
erage linkage fares little better. Complete-linkage hierarchical
clustering is equal to or only slightly worse than that of the
remaining algorithms, but is everywhere better than random.
SOM appears to perform about as well as k-means-based meth-
ods, but does not show the falloff in score with increasing k
that is characteristic of the k-means and hierarchical methods.
If we examine the k-means-based methods in detail, the fol-
lowing conclusions can be drawn. For this data set, the best of
the five k-means distance metrics examined here were Pearson
correlation distance and 3-norm distance, with Pearson cor-
relation distance winning at low k-values, and 3-norm dis-
tance winning for k > 35. It is worth noting that the best dis-
tance measures showed the optimal k-value (k*) to lie between
7 and 10. The Manhattan and Euclidean metrics perform al-
most as well as 3-norm, which is perhaps not surprising, given
the close functional similarity between all three metrics.
Hausdorff distance was the worst performing among the k-
means methods for this data set.

The CJRR data set (shown in Fig. 2b) shows k* to be <10
for all clustering methods. Many of the characteristics ob-
served for the other data sets hold true here also: the poor
performance of single- and average-linkage clustering; the fact
that complete-linkage hierarchical clustering outperforms
both single and average linkage, but never quite matches up
to any of the nonhierarchical methods; and the poorer per-
formance of almost all methods for higher k-values. It is worth
noting that Hausdorff distance shows a much less pro-
nounced falloff with increasing k-values and surpasses the
other distance metrics for high k (>55). Once again, SOM ap-

pears to perform about as well as the best k-means-based
methods at low cluster number, without showing as pro-
nounced a falloff in score with increasing k.

The Gasch data set is shown in Figure 2c. Once again,
single- and average-linkage hierarchical clustering are the
worst performers. Complete linkage and k-means/Hausdorff
are the next poorest performers. The k-means-based metrics
Euclidean, Pearson, Manhattan, and 3-norm all perform simi-
larly to one another. SOM appears to be the best algorithm for
this data set over a wide range of k-values. However, the best
result at any k* was obtained from Euclidean distance. SOM
and all the k-means variants except for Hausdorff show more
or less monotonically decreasing scores with increasing k.
Whereas the Cho and CJRR datasets have a maximum z-score
of ∼ 50, this data set has a maximum score of nearly 100,
indicating that clustering genes by this data set (which con-
sists of responses to a wide range of conditions) yielded sig-
nificantly better grouping according to function than can be
obtained by using the other data sets. It is reasonable that data
collected over a wide range of conditions should yield results
that cluster better according to function, as has been sug-
gested elsewhere (Eisen et al. 1998).

The Spellman data set is shown in Figure 2d. Single and
average linkage are generally worse than random. Hausdorff
with k-means and complete-linkage hierarchical clustering
perform much better than random and show no significant
decrease with increasing k-value, but underperform the re-
maining k-means distance metrics. Manhattan, Euclidean,
and Pearson correlation distance perform comparably for all
k-values, and 3-norm underperforms at low k-values, but
catches up at higher k-values. SOM is slightly worse than the
best k-means-based methods at most k-values, and does
slightly better at higher k-values.

In all the data sets (Fig. 2), the most striking observation
is that single-linkage hierarchical clustering performs signifi-
cantly worse than all the others. In fact, it gave worse-than-
random (a uniformly negative z-score) performance for all
data sets over a wide range of cluster numbers. Average-
linkage hierarchical clustering is also rather poor, scoring sig-
nificantly lower than the other methods, and worse than ran-
dom for cluster numbers above some modest value. The best

Table 1. Four Data Sets Analyzed, Representing Both Affymetrix- and Two-Color cDNA Microarrays, Cell Cycle and Non-Cell Cycle
Data Sets

Name Ratio based? # of genes # of points Description

Cho No 3000 15 Two cell cycles, two of original
timepoints—dropped because
of unreliability

CJRR (Cohen et al. 2002;
Jelinsky et al. 2000;
Robertson et al. 2000;
Roth et al. 1998)

No 3000 52 YAP1/2 knockouts with peroxide
and cadmium added, yeast A
kinase TPK1/2/3 mutants,
chemical and damaging
agents, galactose, heat shock,
and mating type

Gasch Yes 3000 175 Various conditions: temperature
shock; exposure to H2O2,
menadione, diamide, and DTT;
osmotic shock; amino acid
starvation; nitrogen depletion;
stationary phase

Spellman Yes 3000 75 Cultures synchronized in cell
cycle by three independent
methods
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hierarchical clustering result is complete linkage, and al-
though it is always significantly better than random, it never
consistently performs better than the commonly used k-
means-based clustering algorithms.

Hausdorff distance was originally chosen as a straw man
distance measure, and was never expected to perform particu-
larly well, because it throws away much of the information
about the vectors it compares, keeping only the magnitude of
the difference in a single dimension. This expectation is borne
out by the results in that it achieves a score lower than three
other distance metrics used for k-means clustering algorithms.
However, it is worth noting that even this metric performs
significantly better than random. Because it does not fall off
as rapidly with increasing k as other k-means distance mea-
sures, it begins to outperform them at higher k.

DISCUSSION
We studied two ratio-based and two Affymetrix-based data
sets. By ranking the methods used for each data set, our results
indicate that Pearson correlation distance performs better
than or equal to other measures used, when applied to non-
ratio-style data. For ratio-style data, we find that Euclidean

distance is better than or equal to the other measures. Ratio-
style data are log-transformed prior to clustering, to equalize
the effects of up- and down-regulation. This also compresses
the scale of variation, and Euclidean distance may be more
robust than Pearson correlation to such processing. Most re-
searchers have chosen Euclidean distance on standardized
data or Pearson correlation distance for no other reason than
that it seemed obvious, was simple to compute, and because
they have had no rationale for choosing anything more com-
plicated. This is the first demonstration that clearly vindicates
these choices.

Because the shortcomings of the single-linkage hierarchi-
cal clustering method have long been known (Everitt 1980), it
is no surprise that this method performs poorly. (Using a data-
driven approach on the Cho data set and others, and with a
different figure of merit, Yeung et al. [2001] have shown that
single-linkage clustering was close to random, and signifi-
cantly worse than other common algorithms, including k-
means.) However, at first glance it is surprising that it per-
forms less well than random assignment of genes to clusters.
More surprising is that average-linkage clustering not only
performs poorly, but is significantly worse than complete

Figure 2 Four data sets clustered using k-means, hierarchical, and self-organized map algorithms. The horizontal axis shows the number of
clusters desired, and the vertical axis shows z-scores. Data sets are (a) Cho, (b) CJRR, (c) Gasch, and (d) Spellman.
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linkage, because average linkage is generally considered to be
better than both single and complete linkage. The structures
of complete- and average-linkage trees often appear to have
similar topology, but the scores obtained here indicate that
the branching choices near the root node are much more
meaningful in the context of functional annotation for com-
plete- than for average-linkage trees.

To understand how a clustering method can score worse
than random, we note that single-linkage hierarchical clus-
tering tends to produce one single large clade and several
singletons. This division necessarily separates genes that have
attributes in common. On the other hand, the single clade
will contain most genes, yielding almost no information.
With random assignment to clusters of uniform size, we can
expect that sometimes by chance a cluster will contain all
genes possessing a single attribute. Thus, random assignment
can do better than single-linkage hierarchical clustering. Fig-
ure 3 compares single- and complete-linkage z-scores calcu-
lated using random assignment to clusters of uniform size (as
used in the rest of this paper) and also using random assign-
ment to clusters of the size produced by the clustering algo-
rithm itself. The latter tends to subtract the effects of the
uneven cluster sizes generated by the algorithm. After the
effect of cluster sizes is removed, single linkage still performs
on a par with random assignment, whereas complete linkage
performs better, although not as well as average linkage. It
might be argued that using randomly chosen cluster sizes
would be less biased. However, with no prior knowledge of
cluster membership, there is no a priori reason to adopt non-
uniform cluster sizes. Uniform cluster sizes should be consid-

ered the default because this allows for the greatest mutual
information with another variable or set of variables with
unknown entropy. (See the Methods section for further dis-
cussion of mutual information.) Furthermore, certain algo-
rithms have a known tendency to produce clusters of uneven
size, even when the data do not warrant it (Everitt 1980). Such
algorithms are rightly penalized.

Why do SOMs outperform the k-means-based algorithms
examined here at higher k? It may be because of the ability of
SOMs to discriminate between similar clusters. Using the
analogy of the entomologist’s drawer, Tamayo et al. (1999)
indicate that clusters that lie adjacent on the two-dimensional
grid tend to be similar. Perhaps the ability of SOMs to distin-
guish similar but distinct is superior to that of k-means. This
remains an open question.

Supervised learning algorithms for prediction of gene
function on the basis of expression data have been developed
(Brown et al. 2000). Although training such algorithms can be
computationally expensive, and frequent updates are re-
quired as additional annotation becomes available, super-
vised approaches may well outperform unsupervised ones
such as those examined here. But from a pragmatic perspec-
tive, clustering algorithms are at present more readily acces-
sible and usable by experimental biologists than supervised
learning methods. Perhaps more importantly, supervised
learning algorithms are not useful when the training set of
known genes of a given function is small, whereas clustering
may even be useful in discovering a group of coexpressed
genes all holding the same previously undescribed function.
We expect that an optimized clustering methodology will

continue to be useful, de-
spite expected future ad-
vances in supervised learn-
ing from expression data.

METHODS
GO defines three distinct
ontologies (called biologi-
cal process, molecular func-
tion, and cellular compo-
nent) and represents each
as a directed acyclic graph
(DAG), consisting of di-
rected edges and vertices,
such that each vertex may
be descended from several
others. Annotation of a
gene with a descendant at-
tribute implies that the
gene holds all ancestor at-
tributes. We have parsed
annotation from SGD of S.
cerevisiae genes with GO at-
tributes in such a way that
attributes are inherited
through the hierarchy, pro-
ducing a table of ∼ 6300
genes and ∼ 2000 attributes
in which a 1 in position (i,j)
indicates that the gene i is
known to possess attribute
j, and a 0 indicates our lack
of knowledge about whether
gene i possesses attribute j.
In other words, absence of
annotation is not the same
as absence of function.

Figure 3 Hierarchical single- and average-linkage clustering results, scored against random assignment to
clusters of uniform size (solid symbols), and random assignment to clusters of the same size as the clades
obtained by hierarchical clustering (open symbols). For single linkage (circles), the difference is strongest,
reflecting the strong tendency of that algorithm to produce nonuniformly sized clusters (indicated by the
negative scores of the solid circles) that do not contain any functional information (evidenced by the open
circles, which show that even taking account for the cluster sizes produced, the score is equivalent to random
assignment). The scores for complete linkage show little difference (open and solid diamonds are almost on top
of each other), indicating that the cluster sizes returned by this algorithm are indicative of actual clusters in the
data. Average linkage occupies the middle ground (triangles).
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With this gene-attribute table, we construct a contin-
gency table for each cluster–attribute pair (Press et al. 1986;
Cover and Thomas 1991; Schneider 2000), from which we
compute the entropies for each cluster–attribute pair (HAiC),
for the clustering result independent of attributes (HC), and
also for each of the NA attributes in the table independent of
clusters (HAi). Using the definition of mutual information be-
tween two variables X and Y,MI(X,Y) ≡ H(X) + H(Y) � H(X,Y),
and assuming both absolute and conditional independence of
attributes, we expand the total mutual information as a sum
of mutual information between clusters and each individual
attribute. We compute the total mutual information between
the cluster result C and all the attributes Ai as:

MI�C, A1 A2, . . . ANA� = �iMI�C, Ai�

= NAHC + �iHAi − �iHAiC

where summation is over all attributes i (Press et al. 1986).
To illustrate some important characteristics of how this

parameter changes as the degree of correlation between func-
tion and cluster membership is changed, we performed the
following experiment on data that have already been shown
to contain clusters enriched for biological function (Tavazoie
et al. 1999). Beginning with downloaded supplementary data,
in which some 3000 genes are combined into 30 clusters, we
repeatedly chose two clusters at random, swapped one gene
chosen at random from the first cluster with another ran-
domly chosen from the second cluster, and recomputed MI.
In this way, the cluster sizes were held constant, but we slowly
destroyed the degree of correlation between membership in a
cluster and possession of particular attributes. The results are
shown in Figure 4. For simplicity, the mutual information is
shown normalized to its initial value.

Two characteristics are evident. Firstly, as expected, MI
decreases as the clusters become increasingly disordered with
respect to function. Secondly, after a
large enough number of random swaps,
MI reaches a non-zero baseline value, re-
flecting the fact that even for data chosen
at random, when the number of clusters
is much smaller than the number of
genes, there is some degree of mutual in-
formation between membership in a par-
ticular cluster and possession of certain
attributes.

We score a partitioning as follows:
(1) Compute MI for the clustered data
(MIreal), using the attribute database de-
rived from GO/SGD; (2) Compute MI
again, for a clustering obtained by ran-
domly assigning genes to clusters of uni-
form size (MIrandom), repeating until a
distribution of values is obtained; (3)
Compute a z-score for MIreal and the dis-
tribution of MIrandom values (with mean
MIrandom and standard deviation srandom)
according to z = (MIreal � MIrandom)/
srandom. The z-score can then be inter-
preted as a standardized distance be-
tween the MI value obtained by cluster-
ing and those MI values obtained by
random assignment of genes to clusters.
The larger the z-score, the greater the dis-
tance, and higher scores indicate cluster-
ing results more significantly related to
gene function.

Clusters to which genes were randomly assigned were
chosen to be as nearly uniform in size as possible, so that
some of the success of a clustering algorithm relative to ran-
dom may derive from producing nonuniform cluster size dis-
tributions. Uniform cluster sizes yield the highest value of
HC, which allows for the highest possible MI(C,X) for some
va r i ab l e X of unknown ent ropy H (X ) , because
0 � MI(C,X) � min(HC,H(X)).

Preparation of the Database
It is reasonable to assume that those using clustering methods
are seeking a fine structure, rather than a broad one. For ex-
ample, in cell cycle data, genes might be broadly classified
according to the phase of the cell cycle in which they peak,
yielding perhaps no more than five clusters, corresponding to
early G1, late G1, S, G2, and M phases (Cho et al. 1998; Yeung
et al. 2001). Certainly, this is a correct answer, but it yields
little new knowledge. It would be more useful to find those
(probably small) groups of genes sharing rather specific bio-
logical functions (e.g., see Fig. 1 of Eisen et al. 1998, in which
several clusters of genes, varying in size from 5 through 27, are
found to be significantly related in biological function). On
the other hand, it is no help to classify each gene into its own
cluster. Many properties are desirable in an annotation data-
base to improve assessment of relatedness between clustering
results and annotation.

1. The database should contain few attributes that are shared
among all or most genes, because these will not be useful
in clustering in a meaningful way. However, we have
found that removing such shared attributes has no effect
on the overall ranking of the clustering techniques consid-
ered. (Excluding attributes held by >200 genes removed
only ∼ 2% of attributes.) It also does little to improve the

Figure 4 Mutual information (MI) as a function of number of gene pairs swapped between
clusters. At each permutation, two genes are chosen at random from each of two randomly
chosen clusters (there are 30 clusters in all). The genes are swapped, and theMI (between cluster
membership and attribute possession) is recomputed. For convenience, the MI is shown as a
fraction of its initial value. It is clear that MI decreases monotonically as the genes are swapped,
illustrating that it is a good gauge of the quality of the clusters. It does not fall to zero because
even with random assignment of genes to clusters, it is likely that genes will coincidentally end
up in the same cluster. (Clusters taken from Tavazoie et al. 1999.)
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computational speed of the algorithm used to evaluate the
figure of merit; therefore, we did not filter the attributes on
this basis.

2. The database should contain few attributes that are shared
among only a handful of genes because, having low indi-
vidual entropy, these attributes will make little contribu-
tion to the overall mutual information. To accomplish
this, we filtered out attributes that are held by fewer than
Nmin = 10 genes, which removes ∼ 75% of all attributes.
This restriction may shift the optimal number of clusters to
be slightly higher, although our conclusions are robust to
this restriction as discussed below. Although the absolute
scores for the algorithms varied with Nmin, the relative
rankings did not. The above value was used for computa-
tional reasons.

3. Attributes in the database should be as independent as pos-
sible, because we would like to avoid overweighting at-
tributes that have many ancestors, or descendents assigned
to highly overlapping gene sets. We measured indepen-

dence using the uncertainty coeffi-
cient (see Fig. 5), defined as U = MI/
max(MI), where MI is the mutual
information between two at-
tributes. This quantity has the use-
ful property that it varies between
zero and unity, with values close to
zero indicating that possession of
one attribute reveals little about
possession of the other, whereas
values close to unity indicate that a
gene possessing either attribute is
also likely to have the other. One
way to think of this is that for high
U-values, possession of either at
tribute removes a large amount
ofuncertainty about possession of
the other. For low U-values, knowl-
edge of either removes little uncer-
tainty about the other. If any two
attributes are shared by substan-
tially the same collection of genes,
one of the attributes should be ex-
cluded from the database to avoid
counting essentially the same at-
tribute twice. To accomplish this,
we filtered out one of any pair of

attributes that had a pairwise uncertainty coefficient
U>Umax = 0.8.

Sensitivity to Attribute Filtering Process
We have already described the algorithm and parameters used
to reduce the database from the complete annotated genome
to a subset of relatively independent attributes that are nei-
ther too general (e.g., intracellular) nor too specific (e.g., para-
aminobenzoic acid [PABA] synthase) to be useful in finding
meaningful clusters (see Table 2). We have acknowledged that
we are biasing optimal cluster number in this manner. How
sensitive are the results to the particular parameter values we
choose (Nmin, Nmax, Umax)? We have constructed several da-
tabases, based on a variety of choices for Nmin and Umax. We
find that although the particular scores obtained do change
with differing choice of these parameters, the basic shape (lo-
cation of the peak, rolloff at higher k-values, ranking of clus-
tering methods) does not. Also, the relative success of differ-
ent distance measures is insensitive to the parameters used to
filter the attribute database.

Expression-Data Preprocessing Steps
First of all, missing expression-data values were imputed, us-
ing the KNNimpute program (Troyanskaya et al. 2001) with
default parameters (15 nearest neighbors). Ratio-style data
were then log-transformed, and arrays were median-
normalized, to account for interarray differences. Each gene
was median-centered, and ranked by standard deviation
across arrays. The top 3000 genes in this ranking were selected
for clustering and standardized across all arrays, so that each
gene’s expression profile had zero median and unit variance.

Software Implementation
We implemented the k-means algorithm with several differ-
ent distance measures in the Perl programming language
(Wall et al. 2000). Although this algorithm has been imple-
mented for gene clustering, it has not been available in a form
that allowed user-defined distance measures to be easily sub-
stituted in. Numerical performance was improved by up to
two orders of magnitude through use of C code for the core

Table 2. Gene Ontology Consortium Attributes Ranked in
Descending Order by the Number of Genes That Possess
Each Attribute

GO accession
number

Number of
genes hit GO name

GO:0008151 2593 Cell growth and
maintenance

GO:0008152 1920 Metabolism
GO:0005622 1837 Intracellular
GO:0005623 1820 Cell
: : :
GO:0000034 1 Para-aminobenzoic acid

(PABA) synthase
GO:0004482 1 mRNA

(guanine-N7)-methyl-
transferase

Figure 5 U for all attribute pairs, after removing one of each pair with U > 0.9999. Histogram
showing uncertainty coefficient between all pairs of attributes, after removing one of each pair with
U > 0.9999. When a pair of attributes has U = 0, there is no correlation between possession of one
attribute by a gene, and possession of the other. When U = 1.0, they are completely correlated: if
a gene has one attribute, it will certainly also have the other.
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algorithm, written in-house and interfaced with Perl using
SWIG (Beazley et al. 1998; Beazley 2001) and the Perl Data
Language extension (Soeller and Lukka 1997). GeneCluster
(Angelo 1999) and Cluster (Eisen 1999) were obtained from
their respective Web sites. Hierarchical trees from Cluster
were cut into groups based on distance from the root, again
using in-house C code glued to Perl with SWIG.

ACKNOWLEDGMENTS
We thank G. Berriz, O. King, J. White, P. D’haeseleer, and P.
Kharchenko for helpful discussions. We are grateful to G.
Berriz, D. Goldberg, O. King, S. Wong, and S. Komili for criti-
cal reading of the manuscript. We believe this paper was im-
proved by taking account of the suggestions of the anony-
mous referees, and we thank them. This work was supported
in part by the Howard Hughes Medical Institute Biomedical
Research Support Program for Medical Schools.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES
Aach, J., Rindone, W., and Church, G.M. 2000. Systematic

management and analysis of yeast gene expression data. Genome
Res. 10: 431–445.

Angelo, M. 1999. GeneCluster. Whitehead/MIT Center for Genome
Research, Cambridge, MA; http:/www.genome.wi.mit.edu/
cancer/software/software.html.

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry,
J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.
2000. Gene ontology: Tool for the unification of biology. Nat.
Genet. 25: 25–29.

Beazley, D.M. 2001. SWIG User’s Manual v.1.3; http://www.swig.org.
Beazley, D.M., Fletcher, D., and Dumont, D. 1998. Perl extension

building with SWIG. In O’Reilly Perl Conference 2.0, San Jose, CA;
http://www.swig.org/papers/Per198/swigperl.pdf.

Ben-Hur, A., Elisseeff, A., and Guyon, I. 2002. A stability based
method for discovering structure in clustered data. In Pacific
Symposium in Biocomputing (eds. R.B. Altman et al.), pp. 6–17.
World Scientific, Kauai, HI.

Brown, P., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W.,
Furey, Jr., T.S., and Haussler, D. 2000. Knowledge-based analysis
of microarray gene expression data by using support vector
machines. Proc. Natl. Acad. Sci. 97: 262–267.

Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A.,
Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D.,
Lockhart, D.J., et al. 1998. A genome-wide transcriptional
analysis of the mitotic cell cycle. Mol. Cell 2: 65–73.

Cohen, B.A., Pilpel, Y., Mitra, R.D., and Church, G.M. 2002.
Discrimination between paralogs using microarray analysis:
Application to the Yap1p and Yap2p transcriptional networks.
Mol. Biol. Cell 13: 1608–1614.

Cover, T.M. and Thomas, J.A. 1991. Elements of information theory
(ed. D.L. Schilling). Wiley-Interscience, New York.

DeRisi, J.L., Iyer, V.R., and Brown, P.O. 1997. Exploring the
metabolic and genetic control of gene expression on a genomic
scale. Science 278: 680–686.

Eisen, M. 1999. Cluster. http://rana.lbl.gov.
Eisen, M.B. and Brown, P.O. 1999. DNA arrays for analysis of gene

expression. Methods Enzymol. 303: 179–205.
Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. 1998.

Cluster analysis and display of genome-wide expression patterns.
Proc. Natl. Acad. Sci. 95: 14863–14868.

Everitt, B. 1980. Cluster analysis, 1st ed. Heinemann, London.
Fraley, C. and Raftery, A.E. 1998. How many clusters? Which

clustering method? Answers via model-based cluster analysis.
Comput. J. 41: 578–588.

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen,
M.B., Storz, G., Botstein, D., and Brown, P.O. 2000. Genomic
expression programs in the response of yeast cells to
environmental changes. Mol. Biol. Cell 11: 4241–4257.

Gerstein, M. and Jansen, R. 2000. The current excitement in
bioinformatics—analysis of whole-genome expression data: How
does it relate to protein structure and function? Curr. Opin. Struct.
Biol. 10: 574–584.

Getz, G., Levine, E., and Domany, E. 2000. Coupled two-way
clustering analysis of gene microarray data. Proc. Natl. Acad. Sci.
97: 12079–12084.

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M.,

Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri,
M.A., et al. 1999. Molecular classification of cancer: Class
discovery and class prediction by gene expression monitoring.
Science 286: 531–537.

Issel-Tarver, L., Christie, K.R., Dolinski, K., Andrada, R.,
Balakrishnan, R., Ball, C.A., Binkley, G., Dong, S., Dwight, S.S.,
Fisk, D.G., et al. 2002. Saccharomyces genome database. Methods
Enzymol. 350: 329–346.

Jakt, L.M., Cao, L., Cheah, K.S.E., and Smith, D.K. 2001. Assessing
clusters and motifs from gene expression data. Genome Res.
11: 112–123.

Jelinsky, S., Estep, P., Church, G.M., and Samson, L. 2000.
Regulatory networks revealed by transcriptional profiling of
damaged Saccharomyces cerevisiae cells: RPN4 links base excision
repair with proteosomes. Mol. Cell. Biol. 20: 8157–8167.

Lazzeroni, L. and Owen, A. 2000. Plaid models for gene expression
data. Statistica Sinica 12: 61–86.

Lukashin, A.V. and Fuchs, R. 2001. Analysis of temporal gene
expression profiles: Clustering by simulated annealing and
determining the optimal number of clusters. Bioinformatics
17: 405–414.

Michaels, G.S., Carr, D.B., Askenazi, M., Furman, S., Wen, X., and
Somogyi, R. 1998. Cluster analysis and data visualization of
large-scale gene expression data. In Pacific Symposium in
Biocomputing (eds. R.B. Altman et al.), pp. 42–53. World
Scientific, Kauai, HI.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T.
1986. Numerical recipes, 1st ed. Cambridge University Press,
Cambridge, UK.

Quackenbush, J. 2001. Computational analysis of microarray data.
Nat. Rev. Genet. 2: 418–427.

Robertson, L.S., Causton, H.C., Young, R.A., and Fink, G.R. 2000.
The yeast A kinases differentially regulate iron uptake and
respiratory functions. Proc. Natl. Acad. Sci. 97: 5984–5988.

Roth, F.P., Hughes, J.D., Estep, P.W., and Church, G.M. 1998.
Finding DNA regulatory motifs within unaligned noncoding
sequences clustered by whole-genome mRNA quantitation. Nat.
Biotech. 16: 939–945.

Schneider, T.D. 2000. Information theory primer.
http://www.lecb.ncifcrf.gov/∼ toms/paper/primer.

Shamir, R. and Sharan, R. 2000. CLICK: A clustering algorithm with
applications to gene expression analysis. Proc. Int. Conf. Intell.
Syst. Mol. Biol. 8: 307–316.

Sinkkonen, J. and Kaski, S. 2002. Clustering based on conditional
distributions in an auxiliary space. Neur. Comput. 14: 217–239.

Soeller, C. and Lukka, T. 1997. Perl data language user guide.
http://pdl.perl.org/.

Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K.,
Eisen, M.B., Brown, P.O., Botstein, D., and Futcher, B. 1998.
Comprehensive identification of cell cycle-regulated genes of the
yeast Saccharomyces cerevisiae by microarray hybridization. Mol.
Biol. Cell 9: 3273–3297.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitarbeewan, S.,
Dmitrovsky, E., Lander, E.S., and Golub, T.R. 1999. Interpreting
patterns of gene expression with self-organizing maps: Methods
and application to hematopoietic differentiation. Proc. Natl.
Acad. Sci. 96: 2907–2912.

Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., and Church,
G.M. 1999. Systematic determination of genetic network
architecture. Nat. Genet. 22: 281–285.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T.,
Tibshirani, R., Botstein, and Altman, R.B. 2001. Missing value
estimation methods for DNA microarrays. Bioinformatics 17: 520–525.

Wall, L., Christiansen, T., and Orwant, J. 2000. Programming Perl, 3rd
ed. O’Reilly & Associates, Sebastopol, CA.

Wen, X., Fuhrman, S., Michaels, G., Carr, D., Smith, S., Barker, J.,
and Somogyi, R. 1998. Large-scale temporal gene expression
mapping of central nervous system development. Proc. Natl.
Acad. Sci. 95: 334–339.

Yeung, K.Y., Haynor, D.R., and Ruzzo, W.L. 2001. Validating
clustering for gene expression data. Bioinformatics 17: 309–318.

WEB SITE REFERENCES
http://genome-www.stanford.edu/Saccharomyces/; Saccharomyces

genome database.
http://llama.med.harvard.edu/ ∼ fgibbons; ClusterJudge algorithm.
http://pdl.perl.org/; Perl data language user guide.
http://www.lecb.ncifcrf.gov/∼ toms/paper/primer; Information

Theory Primer.

Received May 6, 2002; accepted in revised form July 30, 2002.

Judging Clustering Methods With Gene Annotation

Genome Research 1581
www.genome.org


