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I. Definition of the human interactome
Our working definition of a human interactome map is the complete collection of binary protein-protein interactions detectable in one or more exogenous assays. In theory, this definition includes all possible splice variants for all gene products. In practice, the open reading frames (ORFs) corresponding to all splice variants are incompletely known and largely unavailable in cloned form. We only examine one or a few splice variants for each gene and do not distinguish between splice variants with respect to protein interactions. Future versions of interactome maps should also include information about minimal protein domains necessary and sufficient for all interactions, although this aspect is not taken into account here.

II. Interactome maps as scaffold information

Certain types of information, such as dynamic properties and functional consequences, are excluded from our working definition of the interactome. By analogy, the initial goal of the human genome sequence project was to obtain high-quality DNA sequence information from which (nearly) all genes and their products (i.e. at least one splice variant per gene) could be predicted. Dynamics was similarly excluded from the working definition of this initial goal. Only now, four years after the publication of two drafts of the human genome sequence, an attempt is underway to define (nearly) all functional and regulatory elements, including their dynamics, i.e., when and where they are active1. Thus although both the human genome sequence, and the human interactome map can provide useful biological insight by themselves, still they should be viewed as scaffold information from which more precise systems-level models of gene or protein function can be derived.

III. Iterative approach to the human interactome mapping project

We are mapping the human interactome network using a directed, iterative approach staged into successive versions, with each version defined by the availability of recombinationally-cloned ORFs. An alternative “shotgun” strategy would involve testing large numbers of cDNA pairs randomly cloned into the DB and AD vectors. A shotgun approach, while initially more convenient because the time-consuming efforts needed to clone ORFs can be avoided, is impracticable given that a few extremely abundant cDNAs tend to dominate cDNA libraries. For example, an early shot-gun attempt found just a single interaction, between -globin and -globin, out of millions of pairs tested and thousands of DB-cDNA/AD-cDNA positive yeast two-hybrid interactions2.

IV. High-specificity yeast two-hybrid

To maximize the specificity of the high-throughput yeast two-hybrid screens we incorporated the following features in our strategy, the combination of which was not systematically present in earlier large-scale studies. Both Gal4 DNA binding domain (DB) and Gal4 activation domain (AD) hybrid proteins (DB-X and AD-Y) were expressed from single-copy plasmids, greatly reducing spurious effects due to over-expression3. Three different reporter genes, each under the control of a distinct Gal4-responsive promoter, were used to minimize false positives due to promoter-specific spurious activation3. Potential yeast two-hybrid positives were accepted only if at least two of the three Gal4-inducible promoters showed elevated transcriptional activities.

Yeast two-hybrid auto-activators2, the main source of false positives in high-throughput yeast two-hybrid data sets, were systematically excluded. When not removed, DB-X auto-activators give rise to erroneous positive read-outs, since they activate the yeast two-hybrid reporter genes independently of the identity of the AD-Y partner, or even in the absence of any AD-Y fusion. Obvious strong auto-activators are easy to remove because the DB-X hybrid proteins behave as transcriptional activators. However, ~10% of DB-X baits tested in proteome-scale projects do not auto-activate as wild-type but rather mutate during the course of the screen to generate de novo auto-activators2. De novo auto-activators are the likely source of many false positives in error-prone data sets, e.g., the non-core portion of the Ito et al. yeast yeast two-hybrid data set4. In our high-throughput yeast two-hybrid strategy, elimination of de novo auto-activators is achieved using an AD-Y plasmid carrying the counter-selectable marker CYH2, allowing selection for yeast cells that lose the plasmid in the presence of cycloheximide (CYH)5 (Fig. 1a). After the initial yeast two-hybrid selection, all potential positive clones are tested on plates containing CYH. Clones that are phenotypically positive in the presence of CYH, i.e., in the absence of any AD-Y hybrid protein, are eliminated, substantially decreasing the recovery of auto-activators. Another counter-selectable marker, SPAL10::URA3, was used in presence of 5-fluoro-orotic acid (5-FOA) to eliminate potential de novo auto-activators before mating2.

V. Systematic high-throughput yeast two-hybrid system

We tested each individual DB-X against mini-libraries each containing a pool of 188 AD-Y clones (“AD-188Ys”) by yeast mating in a 96-well format. This strategy was validated by control experiments in which known DB-X/AD-Y interactions were tested in this format. We used ten well-characterized interactions representing a range of affinities that can be detected in the yeast two-hybrid. Yeast cells expressing known AD-Y interactors were diluted at a 1/200 ratio with unrelated AD-188Y mini-libraries, and then mated with cells expressing the cognate DB-X baits. In all cases but one, the expected interactions were recovered under the mating/selection conditions of our assay. 

Our pooling strategy contrasts to other high-throughput yeast two-hybrid proteome-scale screens in which much larger pools of DB-X and AD-Y hybrid proteins were used, with the consequence that not all pair-wise combinations might have been tested, e.g., if clones corresponding to one interaction dominate the pool to the exclusion of other interactions. The use of larger pools likely explains the relatively low coverage rate of the Ito-core and Uetz et al. datasets (~0.15 interactors per protein), which may also account for the low overlap observed between these two data sets6.

To assess the reproducibility of the mating and yeast two-hybrid selection steps, we repeated the high-throughput yeast two-hybrid procedure described above for 392 “94-DB-X/AD-188Y” experiments chosen randomly in Space-I. These represent approximately ~10% of Space-I. We recovered ~55% of the yeast two-hybrid interactions found in the first screening attempt (159/289). This reproducibility rate is close to that observed in proteome-scale affinity purification followed by mass spectrometry experiments7 and suggests that several fold repetition offers a means to further improve sensitivity of future versions of the human interactome map. 

VI. Removing lower confidence yeast two-hybrid interactions

We categorized each yeast two-hybrid positive according to the success of a retest experiment, the number of times they were identified in the primary screens, and the presence of mutation(s) in the ISTs (Supplementary Fig. S1a). First, all collapsed IST pairs were systematically retested by mating using fresh cells. Next, we identified interactions found with multiple splicing and/or polymorphic variants, as well as interactions found in both yeast two-hybrid configurations as both DB-X/AD-Y and DB-Y/AD-X fusions. Finally, when permitted by the quality of the sequence, we detected ISTs for which nonsense mutations or frameshifts were present. After integration of these data, we defined two sets of interactions: 2,754 high confidence yeast two-hybrid interactions (CCSB-HI1) and 863 lower quality yeast two-hybrid interactions (Supplementary Fig. S1a). The latter interactions were not used further in any analysis shown here.

VII. Public release of CCSB-HI1

The CCSB-HI1 data set will be available on our website (http://vidal.dfci.harvard.edu) and through BioGraphnet (http://llama.med.harvard.edu/BioGraphNet.html, unpublished work). It will also be submitted to DIP, BIND and HPRD where the data format will comply with the Molecular Interaction Format (MIF) described in the Proteomics Standard Initiative (PSI) from the Human Proteome Organization (HUPO)8.

VIII. Estimating specificity

To estimate specificity of a high-throughput yeast two-hybrid data set, one must consider technical and biological false positives separately. Technical false positives arise mostly from the high-throughput format of proteome-wide yeast two-hybrid screens and can be avoided to a large extent by improving the experimental procedures, as we attempted here (see below). Biological false positives on the other hand correspond to interactions that are genuine in the yeast two-hybrid system, but do not occur naturally in vivo. It is virtually impossible to unequivocally demonstrate that any two proteins do not interact in vivo, making biological false positives exceedingly difficult to identify and eliminate. However, support for biologically genuine yeast two-hybrid interactions can be increasingly obtained by integrating experimental evidence emerging from other functional genomic or proteomic approaches9,10. Previous studies have integrated interactome data with genome-wide expression profiling (transcriptome) and phenotypic profiling (phenome) data in yeast and worm11,12. We investigated whether such correlations exist for CCSB-HI1 (see main text and “Correlations between CCSB-HI1 and other biological information” section below). 

IX. Technical False Positives

We reasoned that interactions detected in an orthogonal binary interaction assay are unlikely to be technical false positives. Representative samples of 217 CCSB-HI1 interaction pairs were tested in an in vivo co-affinity purification (co-AP) glutathione-S-transferase (GST) pull-down assay in cultured human (293T) cells. As negative controls we randomly selected 15 interactions that are absent from both CCSB-HI1 and LCI data sets. In addition, 15 LCI interactions and 11 interactions present in both LCI and CCSB-HI1 data sets (LCI/Y2H) were also tested. We counted only co-transfection experiments for which both GST-X and Myc-Y fusion proteins were expressed at detectable levels and for which no strong Myc signal was detected in the negative control after purification (GST alone). For 117 such yeast two-hybrid (Y2H) pairs, the co-AP verification rate (adjusted for unknown positives, see Methods) was 78.2% (Fig. 1b and Supplementary Fig. S1b, Supplementary Tables S2 and S3). Similarly, we obtained 62.5% and 81.3% success for the LCI and LCI/Y2H interactions, respectively (Supplementary Table S2). Our overall verification rate is better than the overall ~65% verification rate in the high confidence worm data set13. Importantly, our overall verification rate is comparable to that obtained for LCI interactions.

X. Increasing coverage of yeast two-hybrid data sets

We estimate that ~20-30% of the interactions in LCI that are not detected in our yeast two-hybrid screen are missing due to a combination of technical problems with high-throughput yeast two-hybrid, including failures of DB-X and AD-Y PCR amplification and IST sequencing, exclusion of auto-activators, membrane proteins refractory to yeast two-hybrid, toxicity of particular baits or preys, or the requirement for specific post-translational modifications of certain interactions. 

To investigate the presence and source of any systematic experimental biases, we searched for Pfam domain signatures that are statistically enriched or depleted in either interaction data set relative to their occurrence in Space-I. All but three of the enriched domain signatures are different in the CCSB-HI1 and LCI sets (Supplementary Table S4), consistent with the observed interaction detection bias (Figs. 2b and 2c) Furthermore, CCSB-HI1 interactions are significantly depleted of proteins containing trypsin and 7-transmembrane domains, consistent with previous anecdotal evidence6,14. On the other hand, LCI interactions are enriched for domains such as protein kinase, Ras, caspase and cytokines, which are consistent with ‘inspection bias’ towards proteins of particularly high scientific or medical interest.

In summary, it appears that both the yeast two-hybrid method and the literature have distinct non-overlapping biases, with the literature being subject to both experimental methodological biases15,16 and inspection biases17. This finding clearly illustrates that independent, complementary approaches will be required to exhaustively map the human interactome network map. Coverage will be increased in the future by the use of alternative binary protein interaction assays.

Likewise another substantial portion of the missing information results from the use of full-length ORFs18 (M.B, data not shown). In future versions of the human yeast two-hybrid interactome maps, we plan to systematically test domain-encoding ORF fragments cloned as DB and AD fusions.

XI. Correlations between CCSB-HI1 and other biological information

We investigated whether gene pairs encoding proteins interacting by yeast two-hybrid tend to share similar transcriptional regulatory mechanisms. We examined a set of upstream potential gene-regulatory elements defined previously based on conservation among the human, dog, mouse and rat genomes19, restricting ourselves to specific motifs associated with 400 or fewer genes. Approximately 11.5% of CCSB-HI1 gene pairs share at least one conserved element compared to 8.6% for gene pairs chosen randomly (P = 1 x 10-4) (Table 1, Supplementary Tables S2 and S5).

We also examined gene pairs for which each gene in the pair has a mouse ortholog annotated with some specific phenotype20 (where phenotypes are defined as specific if they have been assigned to 200 or fewer genes). Among these pairs, 25.7% of CCSB-HI1 interacting protein pairs have a specific phenotype in common, compared with 12.8% by chance (P = 3 x 10(3) (Table 1, Supplementary Tables S2 and S5). In addition, we evaluated Gene Ontology (GO) terms associated with each of the protein pairs tested in Space-I to assess the tendency for both CCSB-HI1 and LCI interactions to share similar protein functions. We observed that CCSB-HI1 pairs are 6-12 times more likely (P < 6 x 10-20 for all three GO branches), and LCI pairs are 11-12 times more likely (P < 6 x 10-120 for all branches) to share common GO terms compared to randomly selected gene pairs (Table 1, Supplementary Tables S2 and S5). The high likelihood of LCI interactions to share a GO term is not surprising given inspection bias in the literature for studying interactions, and potential circularity where function has been annotated on the basis of an LCI interaction. That the unbiased CCSB-HI1 interaction pairs yield highly significant functional correlation further supports the overall biological relevance of the CCSB-HI1 data set. 


To determine if mRNAs corresponding to interacting protein pairs are likely to be co-expressed, we computed Pearson Correlation Coefficients (PCCs) for gene pairs in the CCSB-HI1 and LCI data sets using four expression profiling compendia21-24. In all four cases, LCI pairs were enriched for correlated expression (P < 3 x 10-17). A similar pattern, somewhat diminished, was also observed among the CCSB-HI1 pairs for three of the four data sets (P < 3 x 10-5, Table 1, Supplementary Fig. S4, Supplementary Tables S2 and S5). 

XII. Interpretation of overlap with other biological attributes

No single definition of correlation can capture all the useful information relating the expression profiles of two genes, and experimental errors in the expression data sets also raise complications. Nonetheless, a highly significant PCC should be taken as independent evidence in support of a functional relationship between two proteins that can interact in the yeast two-hybrid system. 

However, lack of significant correlation is not an argument against the interaction. For example, depending on the expression data set, only 9-24% of LCI-core protein pairs appear to be co-expressed, even though literature-derived interactions are often taken as a ‘gold standard’25. Furthermore, inspection bias in the literature may favor study of interactions between co-regulated or co-expressed protein pairs. As a result, the true fraction of interacting pairs with correlated expression may be even lower.

XIII. Global properties of the CCSB-HI1 network 

The availability of CCSB-HI1 allowed us to examine questions relating to the global properties of the human interactome. The CCSB-HI1 network exhibits a power law degree distribution (Supplementary Figs. S5a and S5b) as reported for other interactome networks13,26,27. The form of the degree distribution has implications for genetic robustness27,28 and network evolution29. When more rigorous model selection techniques are used, we find that a truncated power law shows a better fit30,31. Amaral et al.32 suggest that a truncated power law distribution, also called a power law with an exponential drop-off, indicates that there are constraints on very high degree nodes. The biological interpretation is not very different from a power law distribution. Although the truncated power law model is a better fit than the power law model according to the Bayesian Information Criterion (BIC; a standard model selection method), the difference in BIC between power law and truncated power law may not be statistically significant, so we conclude that both forms are consistent with the data.  

Short characteristic path length and high clustering coefficient together define a small-world network. Although the CCSB-HI1 network exhibits a short characteristic path length (4.4 vs. 4.1 ± 0.001 for random networks), it does not exhibit high clustering. An otherwise random power law network is expected to be more highly clustered than an Erdös-Rènyi random network with the same number of nodes and edges33. Indeed the clustering coefficient of the CCSB-HI1 network (0.018) is about 10 times higher than in Erdös-Rènyi (ER) random graphs (0.0018 ± 0.0008). This is consistent with results obtained in some earlier studies where ‘real’ networks were compared to ER networks and found to be more clustered. However, the CCSB-HI1 network is less clustered than are randomized networks with the same degree distribution (0.034 ± 0.0001). The lack of strong clustering seemingly contradicts previous findings in other organisms that protein interaction networks are small-world13,30,34. 

This apparent discrepancy has several possible explanations. First, some experimental methods for detecting interactions are more likely than others to contain ‘indirect interactions’ (e.g., interactions derived from affinity purification with a ‘bait’ protein).  Networks derived from such methods are expected to be more clustered because a protein complex becomes a completely connected clique even though not all proteins are in direct physical contact.  Each network previously examined for clustering was ‘contaminated’ with indirect interactions, leading to inflated estimates of clustering, which may explain the apparent reduction in clustering in our interactome network relative to others. For example, a) yeast two-hybrid in yeast is more likely to discover non-binary interactions ‘bridged’ by endogenous proteins; b) small world analysis of C. elegans included interologs and literature interactions which may be non-binary13; and c) small world analysis of D. melanogaster examined only a subset of interactions that were selected using clustering topological properties, which could have led to a circular argument30. Second, the fact that we are sampling a limited subset of links in the complete network could result in a less significant increase in clustering relative to random networks. Third, these observations may indicate that the complete human interactome network is in fact less highly clustered than interactome networks in other organisms. Further investigation of this question seems warranted.

 The clustering coefficient in the CCSB-HI1 network is better approximated by C(k) ( k-1 than by a k-independent C(k) (Supplementary Fig. S5c). Ravasz et al.33 argued that this dependence of the clustering coefficient of a node on its degree is evidence for hierarchical organization. Our result, together with previous observation of hierarchical organization in the yeast interactome35, suggests that hierarchical organization is a conserved feature of interactome networks. We cannot conclude that our observation is valid for the complete interactome, but it is consistent with previous observations in the (also sparsely sampled) yeast interactome. For further interpretation of the biological relevance of this result, we point interested readers to the work of Ravasz et al.33. 

In a high-throughput yeast two-hybrid map of the yeast interactome4, high-degree proteins (hubs) seem to interact preferentially with low-degree proteins36. It was suggested that this negative degree correlation might decrease the extent of cross-talk between different functional cellular modules and might contribute to network robustness and stability by preventing rapid propagation of deleterious perturbations over the network36. For each degree k0, we examined the set of proteins having degree k0 and plotted the average degree k1 of the immediate interaction neighbours of proteins in this set. The relationship between k1 and k0 can be fitted to a power-law curve k1 ( k0-0.42 (Supplementary Fig. S5d). As the protein degree (k0) increases, the average degree of immediate interaction neighbours (k1) decreases rapidly (Supplementary Fig. S5d). This result suggests that negative degree correlation in interactome networks is conserved across eukaryotes.

CCSB-HI1 is a limited sample of the complete interactome network. First, only ~10% of the entire proteome search space was tested. Second, our method has a significant false negative rate. Finally, there are biases for specific classes of proteins to be ‘touched’ or not in the yeast two-hybrid assay, as reflected by our analysis of protein domains in the CCSB-HI1 network. Therefore, some conclusions about the topological properties may be influenced by the sparsely sampled nature of CCSB-HI1 network. However, we can compare our sampled network to other similarly sampled interactome networks from other organisms and look for similarities and differences. This partial understanding of the network can provide useful hypotheses and guide further analyses of the network as it becomes more completely known.

XIV. Models of novel molecular modules 

We applied the MCODE graph clustering algorithm37 to detect densely connected subgraphs in the CCSB-HI1 network and in the combined CCSB-HI1/LCI network. These clusters may represent molecular modules and the coordinating interactions between them (Supplementary Fig. S6 and Supplementary Table S7). 

One high-scoring MCODE cluster (Supplementary Fig. S6a) shows a clustered sub-network interconnected with yeast two-hybrid edges. This sub-network consists entirely of putative transcription regulators, many of which contain C2H2-type zinc finger domains (ZNF434, ZNF167, ZNF24, ZNF263, FLJ20626) and C2H2-associated SCAN oligomerization domains38 (ZNF167, SCAND1, ZNF24, FLJ20626, ZNF263, ZNF434). Through a series of interactions that includes several potential transcription regulators (MGC17403 (TFIIS domain), LZTS1 (leucine zipper domain), and TRIM29 (B-box zinc finger)), this sub-network is linked to another sub-network of potential transcription regulators, all members of the winged-helix RFX transcription regulatory family (RFX2, RFX3, RFX4, RFXDC1), as well as to another small sub-network whose members all contain SAM domains (SFMBT1, PHC1, PHC2) (Supplementary Fig. S6a). Zinc finger proteins of the SCAN class assemble in various combinations to affect transcription on target promoters; the interactions in the subcluster shown represent combinations that could be further investigated38. Furthermore, members of this zinc finger class tend to cluster in several chromosomal locations that are frequently disrupted in several cytogenetic disorders38. Similarly, RFX proteins assemble in various combinations to affect transcription regulation, and several RFX proteins have been implicated in bare lymphocyte syndrome39. 

Another cluster (Supplementary Fig. S6b) contains a highly interconnected sub-network of potential RNA-binding proteins that contain either KH (HNRPK, KHDRBS2, KHDRBS3) or RRM (RBM7, RBMX) RNA-binding domains. These proteins might act in various combinations to modulate diverse aspects of RNA processing40. Supplementary Table S7 lists the 172 MCODE-generated clusters from the CCSB-HI1 network and the combined CCSB-HI1/LCI network, along with information about enriched Gene Ontology terms that were enriched among proteins within a cluster.

XV. CCSB-HI1 and human disease

CCSB-HI1 represents a repository of novel biological hypotheses for genes implicated in human diseases. We compared all CCSB-HI1 proteins to the list of genes associated with human diseases in the OMIM database and identified 424 pairs in which one partner has been previously associated with a human disease (Supplementary Table S8).

We found an interaction between the Dystrobrevin-Binding Protein 1 (DTNBP1 / SDY / HPS7 / My031 / FLJ30031 / MGC20210 / DKFZP564K192) and the DiGeorge syndrome critical region gene 6-like protein (DGCR6L / /FLJ10666). Mutations in DTNBP1 result in Hermansky-Pudlak syndrome type 7 (HPS-7) in both mice and humans41, and alterations in the DTNBP1 locus have been associated with schizophrenia42. Similarly, genetic variation in the DiGeorge locus on 22q11 has also been associated with schizophrenia43. The potential interaction between these two proteins is suggestive of a complex situation in which alterations in a number of specific genes could contribute to schizophrenia.

A cluster of CCSB-HI1 interactions with interesting disease associations involves an interconnected set of non-muscle actins and cofilins (Supplementary Fig. S6c). The interactions between ACTG1 (ACTG / DFNA20 / DFNA26 / beta-actin) and CFL2 as well as between ACTB and CFL2 are supported by co-AP assays. Mutations in ACTG1 are responsible for the autosomal dominant, progressive, sensorineural hearing loss, designated DFNA20/2644.
METHODS
LR cloning

All 8,107 ORFs from the human ORFeome v1.145 were transferred individually by Gateway recombinational cloning46,47 into both pDB-dest and pAD-dest-CYH destination vectors to generate DB-ORF and AD-ORF fusions, respectively5,13. ORF pairs corresponding to 242 interactions were retrieved from our human ORFeome v1.1 resource and transferred into two mammalian expression vectors, in frame with sequences encoding either GST or the Myc Tag, for DB-ORFs (GST-ORF) and AD-ORFs (Myc-ORF), respectively13. Products from recombinational cloning reactions were used directly to transform E. coli to ampicillin resistance, and after overnight growth in liquid culture, plasmid DNAs were prepared in a 96-well format for each pool of bacterial transformants using a Qiagen 9600 Biorobot47,48.

Yeast transformation

DB-ORF and AD-ORF clones were transformed individually into MAT( MaV203 or MATa MaV103 yeast strains49,50, respectively, in a 96-well format5. DB-ORF transformed cells were spotted in a 96-well layout on solid synthetic complete (Sc) media lacking leucine (Sc-L). Transformant spots were then replica-plated onto Sc-L plates containing uracil and 5-fluoro-orotic acid (Sc-L+5FOA) to eliminate as many auto-activators as possible2. Growing colonies were then cultured in liquid Sc-L medium and stored in glycerol for subsequent use. We also systematically tested all DB-ORFs for auto-activation by growth on solid SC-L medium containing 20mM 3-amino-triazole (3-AT), identifying all strong auto-activators and removing them from further consideration as baits in yeast two-hybrid.

AD-ORF transformed yeast cells were initially selected in a 96-well layout on solid Sc medium lacking tryptophan (Sc-T). Growing colonies were then cultured in liquid Sc-T medium and stored in glycerol. Subsequently, aliquots of AD-ORF transformed yeast cells were thawed and pooled to generate 45 mini-libraries containing 188 individual AD-ORF transformants, referred to as “AD-188ORFs”.

Individual DB-ORF and AD-ORF yeast strains are available from OpenBiosystems Inc (Huntsville, Alabama, USA).

Yeast two-hybrid Screening
A 96-well format process was designed to mate 94 individual MAT( MaV203 DB-ORF yeast strains each with the same MATa MaV103 AD-188ORFs mini-library on solid medium containing yeast extract, peptone and dextrose (YPD). Each DB-ORF was individually mated to all AD-ORFs compiled into 45 AD-188ORFs pools. After overnight growth at 30°C, colonies were then transferred to Sc-L-T plates lacking histidine and containing 20mM 3-AT (Sc-L-T+3AT) to select for diploids that exhibited elevated expression levels of the GAL1::HIS3 yeast two-hybrid marker51. The same cells were also transferred in parallel onto Sc-L+3AT plates containing tryptophan and cycloheximide (Sc-L+3AT+CYH). The pAD-dest-CYH vector contains the CYH2 negative selection marker that allows plasmid shuffling on cycloheximide-containing media5. This step is crucial to avoid auto-activators that can arise during yeast two-hybrid selections. Thus auto-activators exhibit a 3AT+/3AT-CYH+ phenotype, while genuine positives exhibit a 3AT+/3AT-CYH- phenotype in this assay (Fig. 1a). Positive colonies were picked from 3AT+/3AT-CYH- spots into a second-generation set of 96-well plates for phenotypic screening. In all approximately 65,000 3AT+/3AT-CYH- colonies were picked.

Scoring yeast two-hybrid read-outs
Consolidated and regrown 3AT+/3AT-CYH- colonies were transferred to both Sc-L+3AT and Sc-L+3AT+CYH plates to confirm GAL1::HIS3 transcriptional activity and to YPD to determine GAL1::lacZ transcriptional activity using a -galactosidase filter assay5. We screened for colonies that retested 3AT+/3AT-CYH- and tested positive at levels equal or higher to that of the DB-RB/AD-E2F interaction pair in our yeast two-hybrid control set5. Of the original 65,000 3AT+/3AT-CYH- colonies, 12,251 passed this double phenotypic test.

Yeast PCR and IST sequencing

Two PCR reactions were performed on all yeast two-hybrid positive colonies to individually amplify both DB-ORFs and AD-ORFs as described5, and the products from the PCR were then purified and used as templates in a cycle-sequencing reaction to obtain two Interaction Sequence Tags (ISTs) per yeast two-hybrid positive as described13.

Pair-wise yeast two-hybrid verification

All yeast two-hybrid interactions were verified by mating individual MAT( MaV203 DB-ORF yeast cells with their corresponding individual MATa MaV103 AD-ORF yeast cells. In case multiple splice-variants for a gene are found in the human ORFeome v1.1, the ORF with the highest similarity to the IST sequenced in the high-throughput screen was used for the retest. The resulting diploids were then tested for their ability to activate all three yeast two-hybrid reporter genes. Ninety one percent of the 2,754 potential CCSB-HI1 interactions successfully passed this yeast two-hybrid retest.

IST analysis

The quality of the ISTs obtained by sequence analysis was determined by moving a sliding window of 10 base pairs along the sequence to define the portion of the IST that has an average PHRED score52,53 of 20 or higher. Sequences for which less than 10% of their length met this criterion were discarded. All sequences were aligned against the human ORFeome v1.1 database (http://horfdb.dfci.harvard.edu/) and only those showing a BLASTN E-value of <10-20 were considered positive. We collapsed all ISTs corresponding to (a) the same DB-X/AD-Y pair, (b) reciprocal pairs (DB-X/AD-Y and DB-Y/AD-X), and (c) splice variants and polymorphic variants having the same Entrez gene ID. Frameshifts and non-sense mutations were determined by BLAST alignment (bl2seq) against the putative ORF sequence.

Definition of the CCSB-HI1 data set

The CCSB-HI1 data set corresponds to all DB-ORF/AD-ORF pairs for which the ISTs were wild type and for which either a) multiple interactions were obtained or b) the interaction was observed upon retesting. Yeast two-hybrid interactions that correspond to pairs in which either the bait- or the prey-encoding sequence contains a nonsense or a frameshift mutation were discarded, as were interactions that failed to retest.

Verification by co-affinity purification (co-AP)

The co-AP experiments were performed as described13 with minor changes. Briefly, plasmids were transfected into human 293T cells using LipofectamineTM 2000 (Invitrogen). Transfected cells were cultured for two days in DMEM medium supplemented with 10% fetal bovine serum. Cell lysates were cleared by centrifugation for 5 minutes at 15,000 x g, and protein complexes obtained by affinity purification using glutathione-sepharose beads. To increase the stringency and reduce non-specific interactions, we used 180mM NaCl in all buffers. Purified complexes and control lysate samples were then displayed on NuPAGE acrylamide gels (Invitrogen), transferred to PVDF membranes, and Myc- and GST- tagged proteins were detected using standard immunoblotting techniques. The antibodies used were mouse monoclonal anti-Myc (clone 9E10) and rabbit polyclonal anti-GST, both purchased from Sigma. The pairs of proteins tested in human cells by co-AP were chosen at random from various categories, i.e., Y2H-only, LCI-only, LCI/Y2H or Y2H/LCI-negative, such that each pair had equal probability of being chosen.

Characteristic examples of scoring the possible scenarios are shown in Supplementary Fig. S1c. Briefly, interactions were considered for scoring if expression of the GST-bait was detected after purification, if expression of the Myc-prey was detected from the protein extract and if no (or only weak) signal for the Myc-prey was detected from the GST-alone control (lanes A-I in Supplementary Fig. S1c). All other experiments (e.g., lack of bait or prey expression or strong signal of the Myc-prey with the GST-alone control) were not considered for further analysis (lanes J-O in Supplementary Fig. S1c). Pairs were scored as co-AP+ if a signal was detected with the GST-bait and if no (or only weak) signal was detected with the GST-alone control (lanes A-C and G-I). Pairs were co-AP- if the no signal was detected for the Myc-prey after purification with the GST-bait (lanes D-F in Supplementary Fig. S1c). To generate Fig. 1b, Supplementary Fig. S1b and S1c, pictures were compiled from many different gels. Bands in each lane were cross-checked to ensure that they were of the expected size by comparing to the markers in the respective gels. We note that since individual lanes were run separately, they may not have uniform migration properties from image to image. 

We present two alternative approaches for calculating the co-AP validation rate (“V”):

Approach 1: We showed that the co-AP assay reports a positive signal for 33% of a collection of presumably non-interacting protein pairs.  Our interpretation of this is that 33% of all co-AP experiments will yield apparently positive but completely uninformative results, i.e., will yield an apparently positive result without regard to whether or not the protein pair truly interacts.  We wish to estimate the fraction of yeast two-hybrid positive pairs that would have been validated by a hypothetical co-AP method that does not produce such uninformative apparently-positive results.  Therefore, we estimated the number of uninformative positive co-AP assays (“U”) and removed them from consideration entirely (from both numerator and denominator).  If “OP” refers to the number of observed positives and “T” refers to the total number of experiments, then the validation rate, “V” is given by


V
= (OP – U) / (T – U)


= (85 – 33) / (100 – 33) = 78% 
Approach 2: Out of a total of “T” experiments, the number of true interactions (“I”) is equal to the number of observed positives (“OP”) minus the number of non-interactions (“N”) that were scored as positive due to the false positive rate (“FP”).  Considering a total of 100 experiments,

I = OP – (FP * N)

N = T – I

Therefore,

I = OP – FP * (100 – I)

I = 85 – 0.33 * (100 – I)

I = 85 – 33 + 0.33 I

0.67 I = 52

I = 78

In other words, the validation rate is 78%.

Similarly, adjusted verification rates were obtained for each category of interaction tested. Finally, we note that our estimate neglects the false negative rate of the co-AP assay. 

Publicly available data sets

The following data sets that distinguish binary and non-binary interactions were used: physical binary protein interaction data for literature-curated interactions were obtained from BIND54 (12/13/2004 from http://www.bind.ca), DIP55 (04/16/2005 from http://dip.doe-mbi.ucla.edu;), HPRD56 (02/22/2005 from http://www.hprd.org), MINT57 (03/24/2005 from http://mint.bio.uniroma2.it/mint;) and MIPS58 (04/20/2005 from http://mips.gsf.de/proj/ppi). Interactions in HPRD that involved only two proteins per interaction ID were considered to be direct binary. Interactions in BIND that were in the flat file “20041213.ints.txt” (all interactions) but not in “20041213.complex.txt” (co-complex memberships) were considered to be direct binary. Interactions from the DIP, MINT and MIPS databases were assigned as direct binary if the associated interaction-detection methods corresponded to one of the following IDs according to the PSI-MI format8: MI:0010 (“beta-galactosidase complementation”), MI:0011 (“beta-lactamase complementation”), MI:0014 (“adenylate cyclase complementation”), MI:0018 (“two hybrid”), MI:0030 (“cross-linking studies”), MI:0031 (“cross-linking with a bi-functional reagent”, “photoaffinity labeling”), MI:0077 (“nuclear magnetic resonance”), MI:0081 (“peptide array”), MI:0089 (“protein array”), MI:0092 (“protein in situ array”), MI:0095 (“SELDI ProteinChip”), MI:0097 (“reverse ras recruitment system”), MI:0099 (“scintillation proximity assay”), MI:0107 (“surface plasmon resonance”), MI:0111 (“dehydrofolate reductase reconstruction”), MI:0112 (“ubiquitin reconstruction”), MI:0114 (“x-ray crystallography”), MI:0397 (“two hybrid array”), MI:0398 (“two hybrid pooling approach”) and MI:0399 (“two hybrid fragment pooling approach”).


The following literature-curated protein-protein interaction data sets were defined from the combined interactions from BIND, DIP, HPRD, MINT and MIPS using the criteria described above for filtering direct binary interactions: (a) ‘LC’, which refers to all direct binary interactions in the entire human proteome in these databases, (b) ‘LCI’, which refers to all direct binary LC interactions within Space-I in these databases, (c) ‘LCI-core’, which refers to the subset of LCI interactions occurring in two or more PubMed IDs, (d) ‘LCI-hypercore’, which refers to the subset of LCI-core that also occurs in two or more of the five databases above and (e) ‘LCI-noncore’, which refers to the LCI interactions that are not in LCI-core. 

 
Mouse phenotypic data were obtained from the Mouse Genome Database59 (04/15/2005 from http://informatics.jax.org), and human-disease associated genes were obtained from the Online Mendelian Inheritance in Man (OMIM) database (04/15/2005 from http://ncbi.nlm.nih.gov/Omim/). GO functional annotation was obtained from the Gene Ontology Annotation database60 via the Entrez Gene database (04/15/2005 at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene). The definition of the GO DAG was obtained from the Gene Ontology database61 (Revision 3.235 of the files component.ontology, function.ontology, and process.ontology from http://www.geneontology.org). Protein domain information was downloaded from Pfam62 (Pfam-A; http://pfam.wustl.edu). Orthologous gene groups for human-mouse, human-fly, human-worm and human-yeast were extracted from the Inparanoid database63 (04/19/2005 from http://inparanoid.cgb.ki.se). Data from all the above sources were mapped to the Entrez Gene64 namespace (http://ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene).

Network graphing

The network graph in Fig. 2 was produced using the GraphWin software based on the library of efficient data types and algorithms (LEDA) (http://www.algorithmic-solutions.com/enledalizenzen.htm). The interactome network in Fig. 3 was created using the yEd Graph Editor powered by yFiles Graph Visualization Library  (http://www.yworks.com/)

Network neighbourhood analysis

1-hop, 2-hop and 3-hop sub-graphs were determined for each node (protein) in the union of CCSB-HI1 and LCI interactions. The frequency distribution of the fraction of yeast two-hybrid edges (interactions) was plotted separately for each network neighbourhood and was compared to the frequency distribution of yeast two-hybrid edges in the corresponding neighbourhoods in networks where the type of evidence supporting each edge (yeast two-hybrid or literature-curated or both) was randomly permuted. To examine if the bias in network neighbourhoods was due to the large number of 1-degree nodes in the interactome, the analysis was repeated using only nodes of degree 2 or higher, and yielded the same general conclusions for the CCSB-HI1/LCI network compared to the random edge-type permuted networks.

Analysis of Pfam domains

We asked which Pfam-A domains are enriched or depleted in proteins involved in interactions in the CCSB-HI1 set or in the LCI set, relative to their prevalence amongst the set of all proteins in Space-I that have at least one annotated Pfam-A domain. We used the Fisher’s exact (cumulative hypergeometric) test to calculate the P-value of this enrichment or depletion (P<0.005).

Transcriptome/interactome comparisons

Pair-wise Pearson Correlation Coefficients (PCCs) were calculated based on microarray expression data21-24. Mouse samples were mapped to human orthologs. Where multiple samples in an expression dataset matched the same Entrez Gene ID, expression profiles were averaged. Missing values were set to zero, arrays were normalized to the median, and genes were excluded if they possessed data in fewer than 70% of conditions, or if the difference between their minimum and maximum normalized values was less than 0.002. For each data set (LCI, CCSB-HI1, etc.), we generated corresponding randomized data sets by choosing the PCC between 100,000 randomly selected gene-pairs in Space-I that remained after the filtering procedures described above.
PCCs were judged 'significant' if they exceeded the 95th percentile of random PCCs. The empirical cumulative probability densities were smoothed before assigning P-values.

Degree Distribution

Degree distribution and small-world network analysis (below) were computed for the CCSB-HI1 network. The form of the degree distribution was computed using a maximum likelihood approach to score power law, exponential, Poisson, and truncated power law models, and using Schwartz’s Bayesian Information Criterion (BIC) to choose amongst models with different numbers of parameters31.

Small-World and Hierarchical Network Analysis

The clustering coefficient for a graph was computed as three times the number of triangles divided by the number of paths of length two65. Clustering coefficient for individual nodes with at least two incident edges was computed as the number of edges amongst neighbours divided by the number of pairs of neighbours66. Characteristic path length was computed as the average distance (shortest path) between pairs of nodes in the largest component66. Two types of randomized networks were used for comparison: i) one generated with the same degree distribution as the network compared, and ii) Erdös-Rènyi style random networks67 generated with the same number of nodes and edges as the observed network.

Degree Correlation

To examine degree correlation in the CCSB-HI1 network, for each degree k0, we plotted the average degree k1 of the immediate neighbours of proteins with degree k0 in the interaction network.

Overlap analyses with functional genomics data sets

We assessed the overlap between Y2H or LCI interaction pairs with other biological gene- or protein-pair characteristics using a one-sided Fisher's exact test. The specific space of possible gene pairs used for analyzing each overlap depended on the nature of the data being examined, but this space was always a subset (not necessarily proper) of the set of all unordered pairs of distinct genes (no homodimers allowed) from Space-I. In the analysis of overlap with correlated coexpression pairs, the space we used was the intersection of Space-I and the tested space of the relevant microarray experiment. In the case of pairs derived from the sharing of attributes, the ‘universe’ of gene pairs was restricted to those pairs in which both genes have one or more annotations in the defining attribute set, since it is not possible a priori for an unannotated gene to share an annotation with another gene.

In the special case of pairs derived from Gene Ontology (GO) attributes, these attributes were "up-propagated", i.e., if a gene was annotated as having a given attribute A, we also associated the gene with all attributes implied by attribute A (namely its predecessors in the GO DAG).

In addition to computing the one-sided P-values for each gene- or protein-pair characteristic examined, we also estimated: the probability that a pair of proteins interact given that they have the characteristic C; the probability of C given that the proteins interact; the probability of the C given that the proteins do not interact; and the marginal probability of the C (its frequency among all pairs without regard to interaction).

Analysis of evolutionary classes of interaction pairs

Each protein in the CCSB-HI1 interaction network was assigned to one of four evolutionary classes: i) “Eukaryotic” if an ortholog was detected in yeast (S. cerevisiae), ii) “Metazoan” if an ortholog was detected in worm (C. elegans) or fly (D. melanogaster) but not in yeast, iii) “Mammalian” if an ortholog was detected in mouse (M. musculus) but not fly, worm or yeast, or iv) “Human” if no ortholog was detected in mouse, fly, worm or yeast. Ortholog assignments from human to the other species above were extracted from the Inparanoid database63. Expected probabilities for CCSB-HI1 interactions between each possible pair of evolutionary classes were calculated as the product of the proportion of CCSB-HI1 proteins present in that pair of evolutionary classes. Statistical significance (P-value) of the difference between observed and expected probabilities for interaction classes was calculated using the chi-squared test with one degree of freedom.  

Generation and analysis of MCODE clusters

The MCODE37 clustering algorithm was used with all default parameters except for vertex weight percentage parameter, which was set to 0.0. MCODE was used to discover densely connected clusters in each of the following data sets: (a) the CCSB-HI1 network, (b) the network resulting from the combination of CCSB-HI1 and LCI interactions and (c) the network resulting from the combination of the CCSB-HI1 and LC interactions.


To characterize MCODE clusters we used FuncAssociate68 to determine Gene Ontology terms that were overrepresented among the genes associated with a given cluster relative to what would be expected for randomly chosen sets of genes of the same size. FuncAssociate computes a one-tailed Fisher's exact test whose categories are "belongs/does not belong to cluster" and "is annotated/is not annotated with GO term". This computation is done for all the GO terms for which annotations are available, and the P-values obtained are corrected for multiple hypotheses by comparing raw P-values against those obtained from 1000 simulated runs using randomized queries (resampling), as described in detail in Berriz et al.68. The definition of the ‘universe’ of all proteins used by FuncAssociate corresponded to the set of all proteins ‘touched’ by an interaction in the network examined by MCODE. 
SUPPLEMENTARY FIGURE LEGENDS

Figure S1. Filtering and quality assessment of yeast two-hybrid interactions. a, Analysis of ISTs and determination of the yeast two-hybrid interactions. Sequences for DB-ORFs and AD-ORFs were retrieved and evaluated for quality of alignment to the human ORFeome v1.1 (upper portion). Interactions were further filtered based on absence of mutations, multiple occurrences, and a positive in a subsequent yeast two-hybrid retest (lower portion) to generate 2,754 high confidence yeast two-hybrid interactions, or CCSB-HI1. b, Verification of yeast two-hybrid interactions by co-affinity purification (co-AP) assays. One hundred and two out of 117 co-AP assays that were considered for scoring are shown. The remaining 15 are shown in Fig. 1b. The middle and bottom panels show expression controls of Myc-prey and GST-bait fusion proteins, respectively. Each lane pair in the top panels shows presence or absence of Myc-prey fusions after affinity purification, demonstrating binding to GST-bait fusion proteins (+) or to GST alone (-). Identities and lane positions of all protein pairs tested by co-AP are provided in Supplementary Tables S2 and S3. c, Characteristic examples of the possible co-AP experiment scenarios are shown in the gels and adjoining table. 

Figure S2. Bias in network neighbourhoods for either CCSB-HI1 or LCI interactions. The frequency of nodes with a given proportion of yeast two-hybrid (Y2H) interactions in their 1-hop (upper panel) and 3-hop (lower panel) neighbourhood is depicted (solid brown curves) for the interactome network in Fig. 2b and for a network in which the types of supporting evidence (Y2H or LC) were randomly permuted amongst edges (dashed green curves).

Figure S3. Occurrence of CCSB-HI1-associated, LCI-associated or randomly associated gene pairs in PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) or Google Scholar (http://scholar.google.com/advanced_scholar_search) searches. The pie chart shows the fractions of gene pairs for which at least one PubMed or Google Scholar hit was obtained using Boolean “AND” searches of the gene symbols.  

Figure S4. Correlation of interaction data with other gene- or protein- pair characteristics. a, Correlation of interaction data sets with mRNA expression profiles. Pearson correlation coefficients between mRNA profiles were calculated for four different microarray data sets21-24 and graphed for genes corresponding to each pair of CCSB-HI1 (red) and LCI (blue) interacting proteins as well as for randomly chosen gene pairs within Space-I (green) that were measured in the relevant microarray experiment. The shaded area represents pairs of proteins from CCSB-HI1 in the top 95 percentile of PCC among random gene pairs. The corresponding percentage of CCSB-HI1 protein pairs and associated P-values are indicated adjacent to the shaded areas. b, Sub-network of CCSB-HI1 interactions that are corroborated by one or more additional functional links. Only the main component is shown. Proteins are depicted as yellow nodes with adjoining gene symbols. Combined physical interactions and functional links between gene- or protein-pairs are depicted as magenta edges (for gene pairs that are co-expressed or share a common conserved upstream motif), green edges (for protein pairs that share a common GO term) or orange edges (for protein pairs that have mouse orthologs that share a common phenotype).
Figure S5. Network Analyses of CCSB-HI1. a, Degree distribution. The fraction of nodes with a given degree in the CCSB-HI1 decreases according to a truncated power law that closely approximates a power law. Dashed lines show the optimal power law fit to the network, solid lines show the optimal truncated power law fit. Both axes are logarithmic, so that a power law curve would appear as a straight line. The three most highly connected proteins have on the order of 100 interactions. The median number of interactions is one, as is expected from a power-law network of this size. The top 10% of proteins with the greatest number of interactions account for 51% of the interactions. b, Degree distribution as in Supplementary Fig. S5a but with the y-axis denoting the number (frequency) of proteins with a given degree. c, Evidence of hierarchical organization. There is a dependence of the clustering coefficient, which measures neighbourhood cohesiveness, on node degree. The solid line corresponds to C(k) ( k-1. A non-hierarchical network would show constant average clustering coefficient regardless of the node’s degree. d, Hubs interact preferentially with low-degree proteins. For each degree k0 in the CCSB-HI1 network, the average degree of immediate neighbours of proteins with degree k0 was plotted. The solid line is a power law fit.

Figure S6. Sub-networks of putative biological modules. Proteins are depicted as yellow nodes and the corresponding interactions are depicted as red edges (CCSB-HI1) or blue edges (LCI). a, MCODE-generated cluster shows different sub-clusters of putative transcriptional regulators linked together. b, MCODE-generated cluster of putative RNA-binding proteins. c, An MCODE cluster of actin-binding proteins. The ACTG1-CFL2 and ACTB-CFL2 interactions were also observed by co-AP.

SUPPLEMENTARY TABLES

Table S1. List of all human ORFs in Space-I that were tested for yeast two-hybrid interactions, along with Entrez Gene IDs and GenBank accession numbers.

Table S2. List of CCSB-HI1 and LCI binary interactions, along with details of the confidence group ("LCI-hypercore", "LCI-core" or "LCI-noncore") for each interaction, whether an interaction was tested/verified by co-AP, and information regarding interacting protein pairs whose: i) mRNAs had statistically significant co-expression in transcription profiling experiments (P < 0.05); ii) share a common mouse phenotype; iii) share a conserved upstream motif; or iv) share a common GO term (process, component or function).

Table S3. List of CCSB-HI1 and LCI interactions that were tested in co-AP experiments, along with details of the molecular weights of the proteins and lane positions in Fig. 1b, Supplementary Figs. S1b and S1c.

Table S4. List of over-represented and under-represented Pfam-A domains in CCSB-HI1 involved in CCSB-HI1 or in LCI interactions, as compared to the distribution of the same domain in Space-I.

Table S5. Analysis of overlap between CCSB-HI1- or LCI-interacting protein-pairs represented by the "Reference" set of gene pairs (I) and other shared gene- or protein-pair characteristics represented by the "Test” set of gene pairs (C).  The analysis for each row is performed relative to a global set N of gene pairs.  For the rows labeled LCI, LCI-core, LCI-non-core, and CCSB-HI1, N is the set T of all unordered pairs of distinct genes (no homodimers allowed) in Space-I.  For the "Correlated expression" rows N is the intersection of T and the set of gene pairs consisting of genes tested in the corresponding microarray experiment.  For the remaining "Same specific" rows N is the subset of pairs in T consisting of genes that have at least one annotation for the characteristic in question. The sets I and C are always subsets of the set N.  In general !X is the set of pairs in N that do not belong to X.  The headings I&C, I&!C, !I&C, and !I&!C, correspond to the four cells of a 2x2 contingency table for the categories "belongs in the set I" and "belongs in the set C" (that is, has the characteristic in question).  For example I&!C corresponds to the cell of those pairs that are in the set I but not in the set C.  P(X|Y) denotes the fraction of the pairs in Y that are also in X.  P(C) =  ( #C / #N ), where #C is the number of pairs in set C (#C = I&C + !I&C) and #N is the number of pairs in N (#N = I&C + I&!C + !I&C + !I&!C).  In other words, P(C) is the fraction of the pairs in N that belong to C.  Lastly, the heading "p-val" corresponds to the one-tailed P-value corresponding to the Fisher's Exact Test statistic for the 2x2 contingency table. 
Table S6. Interactions between proteins in the same evolutionary class occur more often than expected by chance in the CCSB-HI1 network. Shown are expected and observed numbers of CCSB-HI1 interactions involving each possible pair wise combination of proteins specific to four non-overlapping evolutionary classes, i.e., "Eukaryote", "Metazoan", "Mammalian" and "Human", along with the associated chi-square P-value.
Table S7. List of 172 MCODE-generated clusters from the CCSB-HI1 network and the combined CCSB-HI1/LCI and CCSB-HI1/LC networks, along with GO terms that are significantly enriched in each cluster relative to proteins in the corresponding overall network, as determined using FuncAssociate.

Table S8. Associations with genetic disorders. A list of proteins having both a CCSB-HI1 interaction and an associated OMIM ID, along with their CCSB-HI1 interaction partners. To focus on novel connections to disease-associated proteins provided by CCSB-HI1 data set, we excluded protein pairs previously reported in literature-curated interactions (including binary LCI interactions and non-binary interactions in the BIND, DIP, HPRD, MINT, MIPS or Reactome69 databases) or by an additional literature-derived interaction collection which also includes interologs17. The associated disease name is indicated along with the gene symbol and Entrez ID for all CCSB-HI1 ORFs with a corresponding OMIM entry, as well as the gene symbol, Entrez ID, and description of the CCSB-HI1 interaction partner. Over 80% of the 424 pairs listed are likely to be novel based on the lack of co-occurrence of a pairwise PubMed (2.11% of all pairs have co-citation) or Google Scholar (17.3% of all pairs have a co-citation) entry.
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